Westerweiterung des CTH

Fachbeitrag zur Wasserrahmenrichtlinie

Auftraggeber:

Hamburg Port Authority AöR
Neuer Wandraham 4
20457 Hamburg

IBL Umweltplanung GmbH
Bahnhofstraße 14a
26122 Oldenburg
Tel.: 0441 505017-10
www.ibl-umweltplanung.de

Zust. Geschäftsführer: W. Herr
Projektleitung: C. Mieth
Bearbeitung: IBL Umweltplanung GmbH
Projekt-Nr.: 1024
Datum: 17.12.2015, rev. 7-0
Hamburg Port Authority (HPA)
Westerweiterung des CTH
Rev.-Nr. 7-0
Fachbeitrag WRRL
IBL Umweltplanung GmbH

Inhaltsverzeichnis

1 Zusammenfassung ... 1

2 Anlass- und Aufgabenstellung ... 4

3 Rechtliche Grundlagen .. 5

4 Methodische Grundlagen ... 8

4.1 Auswahl der durch das Vorhaben betroffenen Oberflächen- und Grundwasserkörper ... 8

4.2 Oberflächenwasserkörper ... 8

4.2.1 Beschreibung und Bewertung des ökologischen Zustands/Potenzials und des chemischen Zustands ... 8

4.2.2 Prüfung von Verschlechterungen des ökologischen Zustands/Potenzials und des chemischen Zustands ... 11

4.2.3 Schadensmindernde Maßnahmen/Vorkehrungen ... 16

4.2.4 Prüfung von Gefährdungen der Zielerreichung des guten ökologischen Zustands/Potenzials und des guten chemischen Zustands ... 16

4.3 Grundwasserkörper .. 18

4.3.1 Beschreibung und Bewertung des mengenmäßigen und chemischen Zustands ... 18

4.3.2 Prüfung von Verschlechterungen des mengenmäßigen und chemischen Zustands .. 18

4.3.3 Prüfung von Gefährdungen der Zielerreichung des guten mengenmäßigen und guten chemischen Zustands ... 20

4.4 Zur Berücksichtigung eines volumen- oder flächenbezogenen Maßstabs 21

5 Kurzbeschreibung des Vorhabens ... 24

6 Oberflächenwasserkörper ... 25

6.1 Identifizierung der betroffenen Oberflächenwasserkörper .. 25

6.1.1 Räumliche Lage des Vorhabens im Koordinierungsraum Tideelbe 25

6.1.2 Untersuchungsrelevante Vorhabenswirkungen .. 25

6.1.3 Charakterisierende Übersicht identifizierter Oberflächenwasserkörper 28

6.2 Oberflächenwasserkörper Hafen (DE_RW_DEHH_el_02) ... 35

6.2.1 Übersicht zum OWK Hafen .. 35

6.2.2 Beschreibung und Bewertung des ökologischen Potenzials und des chemischen Zustands im OWK Hafen ... 38

6.2.3 Prüfung möglicher vorhabensbedingter Verschlechterungen des ökologischen Potenzials und des chemischen Zustands .. 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.4</td>
<td>Zusammenfassung und Gesamtbewertung zum OWK Hafen (DE_RW_DEHH_el_02)</td>
<td>74</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Prüfung möglicher vorhabensbedingter Gefährdungen der Zielerreichung des guten ökologischen Potenzials und des guten chemischen Zustands im OWK Hafen</td>
<td>74</td>
</tr>
<tr>
<td>6.3</td>
<td>Oberflächenwasserkörper Elbe-Ost, Elbe-West, Elbe-Übergangsgewässers und Elbe-Küstengewässer</td>
<td>79</td>
</tr>
<tr>
<td>6.4</td>
<td>Ausnahmegründe</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>Grundwasserkörper</td>
<td>84</td>
</tr>
<tr>
<td>7.1</td>
<td>Identifizierung der betroffenen Grundwasserkörper unter Berücksichtigung untersuchungsrelevanter Vorhabenswirkungen</td>
<td>84</td>
</tr>
<tr>
<td>7.2</td>
<td>Grundwasserkörper Este/Seeve Lockergestein (NI11_3) und Braunkohlensande Mittelholstein (N8, tief)</td>
<td>86</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Beschreibung und Bewertung des mengenmäßigen und chemischen Zustands</td>
<td>86</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Prüfung möglicher vorhabensbedingter Verschlechterungen des mengenmäßigen und chemischen Zustands</td>
<td>89</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Prüfung möglicher vorhabensbedingter Gefährdungen der Zielerreichung des guten mengenmäßigen und chemischen Zustands</td>
<td>90</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Zusammenfassung und Gesamtbewertung zu den Grundwasserkörpern Este/Seeve Lockergestein (NI11_3) und Braunkohlensande Mittelholstein (N8, tief)</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>Schadensmindernde Maßnahmen/Vorkehrungen</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>Literatur</td>
<td>95</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 2.1-1: Abgrenzung des Vorhabensbereichs und Lage des Vorhabens im Raum4
Abbildung 3.1-1: Ziele der Wasserrahmenrichtlinie gemäß Art. 4 WRRL ..6
Abbildung 4.2-1: Schema zur generellen Vorgehensweise (Prüfschritte)13
Abbildung 4.2-2: Biologische Qualitätskomponenten: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“ ..14
Abbildung 4.2-3: Chemischer Zustand: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“ ...15
Abbildung 4.3-1: Mengenmäßiger Zustand des Grundwassers: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“ ..19
Abbildung 4.3-2: Chemischer Zustand des Grundwassers: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“ ...20
Abbildung 6.1-1: Lage des Vorhabens im Koordinationsraum Tideelbe (ohne Küstengewässer) ..25
Abbildung 6.1-2: Vom Vorhaben betroffener Oberflächenwasserkörper des Küstengewässers (Wasserkörper-Nr. N3.5000.04.01) ...30
Abbildung 6.1-3: Ökologischer Zustand bzw. ökologisches Potenzial und chemischer Zustand der Oberflächenwasserkörper der Tideelbe (FGG Elbe 2014a, Bewirtschaftungszeitraum 2016-2021) ...32
Abbildung 6.2-1: OWK Hafen (DE_RW_DEHH_el_02, räumliche Abgrenzung)35
Abbildung 6.2-3: Lage der beprobten Muschelbank im OWK Hafen69
Abbildung 6.3-1: Zu erwartende vorhabensbedingte Veränderungen von Tidewasserständen (Prognose der BAW 2008, Westerweiterung Eurogate – PIZ)80
Abbildung 6.3-2: Zu erwartende vorhabensbedingte Veränderungen des Salzgehaltes (Prognose der BAW 2008, Westerweiterung Eurogate – PIZ)82
Abbildung 7.1-1: Oberflächennahe Grundwasserkörper und Schutzzonen (Wasserschutzgebiete) in Hamburg ...85
Abbildung 7.1-2: Tiefer Grundwasserkörper N8 im Vorhabensbereich85
Abbildung 7.2-1: Mengenmäßiger Zustand: Bewertungsergebnis Hauptgrundwasserleiter (Oberflächennaher Grundwasserkörper) und tiefe Grundwasserkörper87
Abbildung 7.2-2: Chemischer Zustand: Bewertungsergebnis Hauptgrundwasserleiter (Oberflächennaher Grundwasserkörper) und tiefe Grundwasserkörper88
Tabellenverzeichnis

Tabelle 4.2-1: Biologische Qualitätskomponenten (QK) der Oberflächengewässer-Kategorien Flüsse, Übergangsgewässer und Küstengewässer 9
Tabelle 4.2-2: Hydromorphologische und physikalisch-chemische Qualitätskomponenten (QK) der Kategorien Flüsse, Übergangs- und Küstengewässer in Unterstützung der biologischen Komponenten ... 10
Tabelle 4.4-1: Darstellung zur sachangemessenen Vorgehensweise bei der Bestandsbeschreibung und -bewertung von biologischen Qualitätskomponenten (flächen- oder volumenbezogener Maßstab) .. 21
Tabelle 4.4-2: Darstellung zur sachangemessenen Vorgehensweise bei der Bestandsbeschreibung und -bewertung der unterstützend heranzuziehenden Komponenten (flächen- oder volumenbezogener Maßstab) .. 22
Tabelle 6.1-1: Vorhabenswirkungen (mess- und beobachtbare Veränderungen) ... 26
Tabelle 6.1-2: Vorhabenswirkungen (nicht mess- und beobachtbare Veränderungen) 27
Tabelle 6.1-3: Längseinteilung der Tidelbe in fünf Oberflächenwasserkörper (nach ARGE Elbe 2004) ... 29
Tabelle 6.1-4: Eigenschaften und Einstufungen der vom Vorhaben betroffenen Oberflächenwasserkörper (ohne Nebengewässer) ... 31
Tabelle 6.1-5: Charakteristika von Nebenflüssen der Tidelbe ... 33
Tabelle 6.2-1: Beschreibung des Oberflächenwasserkörpers Hafen ... 36
Tabelle 6.2-2: Einstufung der biologischen Qualitätskomponenten, des chemischen Zustands und chemischer Qualitätskomponenten im OWK Hafen gem. Bewirtschaftungsplan 2016-2021 (FFG Elbe 2014a) .. 38
Tabelle 6.2-3: Ergänzende und hilfsweise Einstufung der hydromorphologischen und allgemeinen physikalisch-chemischen Qualitätskomponenten in Unterstützung der biologischen Qualitätskomponenten ... 39
Tabelle 6.2-4: OWK Flottbek (Nebenfluss mit Mündung in den OWK Hafen) ... 40
Tabelle 6.2-5: Ökologische Potenzialklassen sowie Einstufung der QK Phytoplankton im OWK Hafen (DE_RW_DEHH_el_02) .. 41
Tabelle 6.2-6: Ökologische Potenzialklassen sowie Einstufung der QK Makrophyten im OWK Hafen (DE_RW_DEHH_el_02) .. 43
Tabelle 6.2-7: Ökologische Potenzialklassen sowie Einstufung der QK benthische wirbellose Fauna im OWK Hafen (DE_RW_DEHH_el_02) .. 45
Tabelle 6.2-8: Bewertung der QK benthische wirbellose Fauna im OWK Hafen nach FGG Elbe (auf Basis von Krieg 2013 und BioConsult 2015) .. 48
Tabelle 6.2-9: Ökologische Potenzialklassen sowie Einstufung der QK Fischfauna im OWK Hafen (DE_RW_DEHH_el_02) .. 50
Tabelle 6.2-10: Bewertung der QK Fischfauna im OWK Hafen nach BioConsult (2014) 52
Tabelle 6.2-11: Bewertungsergebnisse der Qualitätskomponentengruppe Morphologie zu den Belastungsgruppen D und E .. 54
Tabelle 6.2-12: Bewertung der Parameter der Qualitätskomponentengruppe Morphologie (nach FGG Elbe 2013) .. 56
Tabelle 6.2-13: Übersicht über ausgewählte hydrologische Kenngrößen (Elbe-km 625, 628 und 630) .. 60
Tabelle 6.2-14: Chemische Zustandsklassen und Bewertung des chemischen Zustandes des OWK Hafen .. 64
Tabelle 6.2-15: Schadstoffe mit Überschreitungen der Umweltqualitätsnormen nach FGG Elbe (2014a, 2014g) .. 66
Tabelle 6.2-16: Herkunftsberichte und Eintrittspfade der Schadstoffe (nur für Stoffe mit Überschreitungen der Umweltqualitätsnormen) .. 68
Tabelle 6.2-17: Zuordnung der Schadstoffe mit Überschreitungen der Umweltqualitätsnormen im OWK Hafen zu den Stoffklassen der festgestellten Belastungen .. 72
Tabelle 6.2-18: Übersicht über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung erforderlichen Maßnahmen zur Reduzierung von hydromorphologischen Veränderungen des Entwurfes zum aktualisierten Maßnahmenprogramms (FGG Elbe 2014f) ..76

Tabelle 6.2-19: Übersicht über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung vorgeschlagenen Einzelmaßnahmen zur Reduzierung von hydromorphologischen Veränderungen (Arbeitsgruppenergebnis der AG TES, schriftl. Mitt. vom 09.09.2015) ..77

Tabelle 6.2-20: Übersicht über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung vorgeschlagenen Einzelmaßnahmen in der Tideelbe zur Reduzierung von Überschreitung von Umweltqualitätsnormen des chemischen Zustands (Arbeitsgruppenergebnis der AG TES, schriftl. Mitt. vom 09.09.2015) ...78

Tabelle 7.1-1: Grundwasserkörper im Vorhabensbereich ..84

Tabelle 7.2-1: Vorhabensbedingt betroffene Grundwasserkörper, Zustandsbewertung im 1. und 2. Bewirtschaftungsplan nach FGG Elbe (2014a) ...89

Tabelle 7.2-2: Übersicht über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung erforderlichen Maßnahmen für Grundwasserkörper im Koordinierungsraum TEL (FGG Elbe 2014f) ...91
1 Zusammenfassung

Aufgabenstellung

Die Hamburg Port Authority (HPA) beabsichtigt als Vorhabensträgerin die Umstrukturierung des Petroleumhafenareals zur Errichtung der Infrastruktur eines Containerterminals der Firma Eurogate. Das Vorhaben „Westerweiterung des CTH“ befindet sich derzeitig im Planfeststellungsverfahren. In dem vorliegenden Fachbeitrag wird geprüft, ob das Vorhaben „Westerweiterung des CTH“ mit den Zielen der Richtlinie 2000/60/EG (Wasserrahmenrichtlinie) bzw. den Bewirtschaftungszielen gemäß §§ 27, 44 Wasserhaushaltsgesetz (WHG) vereinbar ist. Die Bearbeitung konzentriert sich auf die Fragen,

a) ob vorhabensbedingt eine Verschlechterung des chemischen Zustands und des ökologischen Zustands (bzw. Potenzials) eintreten wird und

b) ob vorhabensbedingt eine Verbesserung der Gewässer zum guten chemischen und ökologischen Zustand (Potenzial) erschwert werden wird.

Des Weiteren werden die Bewirtschaftungsziele für das Schutzgut Grundwasser (§ 47 WHG) berücksichtigt.

Oberflächenwasserkörper

Methodik

Das Vorhaben ist mit Lage im Oberflächenwasserkörper (OWK) Hafen geplant. Das ökologische Potenzial der Oberflächenwasserkörper Hafen wird beschrieben. Die Auswahl der zu untersuchenden Qualitätskomponenten basiert auf den Vorgaben der Oberflächengewässerverordnung (OGewV). Zudem werden einmündende Nebenflüsse in die Untersuchung einbezogen. Berücksichtigt werden demnach die biologischen Qualitätskomponenten (Gewässerflora und –fauna) nach Anlage 3 Nr. 1 der OGewV (Biologische Qualitätskomponenten); zudem hydromorphologische Qualitätskomponenten (Anlage 3, Nr. 2 der OGewV) sowie chemische und allgemeine physikalisch-chemische Komponenten (Anlage 3, Nr. 3.1 und 3.2 der OGewV). Des Weiteren werden die Bewertungsergebnisse des chemischen Zustands berücksichtigt.

Der Auslegung des Verschlechterungsbegriffs nach dem Urteil des EuGH vom 01.07.2015 (Rs. C-461/13) wird in diesem Gutachten gefolgt. Demnach ist die „kombinierte Zustandsklassen-/Status quo-Theorie“ im Hinblick auf das Verschlechterungsverbot anzuwenden und es gilt, dass nicht jede

1 Im Weiteren auch als „WRRL“ abgekürzt.
2 § 27 WHG bezieht sich auf „oberirdische Gewässer“; § 44 WHG bezieht sich auf Küstengewässer.
3 Das „Potenzial“ ist der Zustand eines erheblich veränderten oder künstlichen Wasserkörpers, der nach den einschlägigen Bestimmungen des Anhangs V WRRL entsprechend eingestuft wurde.

Bei der Untersuchung einer vorhabensbedingten möglichen Verschlechterung werden zunächst zu erwartende Veränderungen auf die unterstützenden hydromorphologischen Qualitätskomponenten sowie auf physikalisch-chemische und chemische Qualitätskomponenten beschrieben und bewertet. Untersucht wird, ob die vorhabensbedingt festgestellten Veränderungen auf die unterstützend heranzuziehenden Qualitätskomponenten geeignet sein könnten, die Habitatbedingungen für die biologischen Qualitätskomponenten derart zu verändern, dass ein Abweichen vom Status quo oder eine veränderte Einstufung der Zustands- bzw. Potenzialbewertung nicht auszuschließen ist. Aufbauend darauf erfolgt die Beschreibung und Bewertung vorhabensbedingt nachteiliger Veränderungen von biologischen Qualitätskomponenten und des chemischen Zustands in den untersuchungsrelevanten Oberflächenwasserleitern.

Zur Untersuchung vorhabensbedingter Auswirkungen auf die Erreichung der Ziele der WRRL wird das vorliegende Maßnahmenprogramm ausgewertet. Zudem werden vorhabensbedingt mögliche Auswirkungen auf konkret für die Oberflächenwasserleiter benannte Einzelmaßnahmen geprüft.

Ergebnis

Im Oberflächenwasserleiter Hafen sind die für die Bewertung des ökologischen Potenzials maßgeblichen biologischen Qualitätskomponenten der Gewässerflora und –fauna in der vorliegenden Aktualisierung des Bewirtschaftungsplans nicht in die niedrigste Klasse eingestuft. Dementsprechend war zu untersuchen, ob vorhabensbedingt ein Wechsel der Potenzialklasse zu erwarten sein könnte. Im Ergebnis der Untersuchung wurde festgestellt, dass dies vorhabensbedingt nicht zu erwarten ist. Das Vorhaben ist ungeeignet, in den untersuchten Oberflächenwasserleitern Verschlechterungen mit dem Ergebnis eines Klassenwechsels hervorzurufen.

Stand: 17.12.2015
Eine vorhabensbedingte Gefährdung der Zielerreichung ist nicht zu erwarten. Die für die Zielerreichung erforderlichen Maßnahmen(gruppen) werden hinsichtlich ihrer Umsetzung nicht be- oder verhindert. Eine Verzögerung der Zielerreichung durch Verschlechterungen des Zustands biologischer Qualitätskomponenten ist vorhabensbedingt nicht zu erwarten.

Grundwasserkörper

Methodik

Zur Untersuchung vorhabensbedingter Auswirkungen auf die Erreichung der Ziele der WRRL wird das vorliegende Maßnahmenprogramm hinsichtlich der für die Zielerreichung von Grundwasserkörpern benannten Maßnahmen ausgewertet.

Ergebnis

Eine vorhabensbedingte Gefährdung der Zielerreichung ist ebenso nicht zu erwarten. Die für die Zielerreichung erforderlichen Maßnahmen(gruppen) werden hinsichtlich ihrer Umsetzung nicht be- oder verhindert. Eine Verzögerung der Zielerreichung durch Verschlechterungen des mengenmäßigen oder chemischen Zustands ist vorhabensbedingt nicht zu erwarten.
2 Anlass- und Aufgabenstellung

Abbildung 2.1-1: Abgrenzung des Vorhabensbereichs und Lage des Vorhabens im Raum

In dem vorliegenden Fachbeitrag zur Richtlinie 2000/60/EG (Wasserrahmenrichtlinie⁴) wird geprüft, ob das Vorhaben „Westerweiterung des CTH“ mit den Zielen der Wasserrahmenrichtlinie bzw. den Bewirtschaftungszielen gemäß §§ 27, 44 Wasserhaushaltsgesetz (WHG°⁵) vereinbar ist. Es wird geprüft, ob infolge der vorhabensbedingten Veränderungen

- eine Verschlechterung des ökologischen Zustands (Potenzials) und/ oder des chemischen Zustands eines oberirdischen Gewässers zu erwarten ist
- und/oder der gute ökologische Zustand (Potenzial) oder der gute chemische Zustand zukünftig nicht erreicht werden kann sowie

⁴ Im Weiteren auch als „WRRL“ abgekürzt.
⁵ § 27 WHG bezieht sich auf „oberirdische Gewässer“; § 44 WHG bezieht sich auf Küstengewässer.
• ob eine Verschlechterung des mengenmäßigen und chemischen Zustands des Grundwassers zu erwarten ist
• und/oder der gute mengenmäßige und gute chemische Zustand des Grundwassers zukünftig nicht erreicht werden kann.

Nebenflüsse der Tideelbe sind in die Betrachtung einbezogen.

3 Rechtliche Grundlagen

⁶ Oberirdische Gewässer: „das ständig oder zeitweilig in Betten fließende oder stehende oder aus Quellen wild abfließende Wasser“ (§ 3 Nr. 1 WHG)
⁷ Küstengewässer: „das Meer zwischen der Küstenlinie bei mittlerem Hochwasser oder zwischen der seewärtigen Begrenzung der oberirdischen Gewässer und der seewärtigen Begrenzung des Küstenmeeres” (§ 3 Nr. 2 WHG)
⁸ Künstliche Gewässer: „von Menschen geschaffene Oberirdische Gewässer oder Küstengewässer“ (§ 3 Nr. 4 WHG)
⁹ Erheblich veränderte Gewässer: „durch den Menschen in ihrem Wesen physikalisch erheblich veränderte oberirdische Gewässer oder Küstengewässer“ (§ 3 Nr. 5 WHG)
¹⁰ Grundwasser: „das unterirdische Wasser in der Sättigungszone, das in unmittelbarer Berührung mit dem Boden oder dem Untergrund steht“ (§ 3 Abs. 3 WHG)
¹¹ Gebiete gemäß Anhang IV WRRL
Die Bewirtschaftung der oberirdischen Gewässer in Deutschland ist im Wasserhaushaltsgesetz (WHG) in den §§ 27 bis 31 geregelt. Gemäß WHG ist eine Verschlechterung des Zustands der oberirdischen Gewässer zu vermeiden: „Oberirdische Gewässer sind, soweit sie nicht nach § 28 als künstlich oder erheblich verändert eingestuft werden, so zu bewirtschaften, dass
1. eine Verschlechterung ihres ökologischen und ihres chemischen Zustands vermieden wird und
2. ein guter ökologischer und ein guter chemischer Zustand erhalten oder erreicht werden“ (§ 27 Abs. 1 WHG).

Ferner gilt: „Oberirdische Gewässer, die nach § 28 als künstlich oder erheblich verändert eingestuft werden, sind so zu bewirtschaften, dass
1. eine Verschlechterung ihres ökologischen Potenzials und ihres chemischen Zustands vermieden wird und
2. ein gutes ökologisches Potenzial und ein guter chemischer Zustand erhalten oder erreicht werden“ (§ 27 Abs. 2 WHG).

Die Bewirtschaftung des Grundwassers ist in § 47 WHG geregelt. Es gilt: „Das Grundwasser ist so zu bewirtschaften, dass
1. eine Verschlechterung seines mengenmäßigen und seines chemischen Zustands vermieden wird;
2. alle signifikanten und anhaltenden Trends ansteigender Schadstoffkonzentrationen auf Grund der Auswirkungen menschlicher Tätigkeiten umgekehrt werden;
3. ein guter mengenmäßiger und ein guter chemischer Zustand erhalten oder erreicht werden; zu einem guten mengenmäßigen Zustand gehört insbesondere ein Gleichgewicht zwischen Grundwasserentnahme und Grundwasserneubildung (§ 47 Abs. 1 WHG).“
Für Ausnahmen von den Bewirtschaftungszielen nach Absatz 1 gilt § 31 Absatz 1, 2 Satz 1 und Absatz 3 entsprechend […] (§ 47 Abs. 3 WHG)“.

Werden die physischen Eigenschaften eines Gewässers verändert (z.B. durch ein Gewässerausbauvorhaben) und sind deshalb der gute ökologische Zustand oder das gute ökologische Potenzial sowie der gute chemische Zustand nicht zu erreichen oder ist eine Verschlechterung des Zustands eines Gewässers nicht zu vermeiden, so ist dies nach § 31 Abs. 2 WHG zulässig (vgl. Art. 4 Abs. 7 WRRL), wenn

1. „dies auf einer neuen Veränderung der physischen Gewässereigenschaft oder des Grundwasserstands beruht,
2. die Gründe für die Veränderung von übergeordnetem öffentlichen Interesse sind oder wenn der Nutzen der neuen Veränderung für die Gesundheit oder Sicherheit des Menschen oder für die nachhaltige Entwicklung größer ist als der Nutzen, den die Erreichung der Bewirtschaftungsziele für die Umwelt und die Allgemeinheit hat,
3. die Ziele, die mit der Veränderung des Gewässers verfolgt werden, nicht mit anderen geeigneten Maßnahmen erreicht werden können, die wesentlich geringere nachteilige Auswirkungen auf die Umwelt haben, technisch durchführbar und nicht mit unverhältnismäßig hohem Aufwand verbunden sind und
4. alle praktisch geeigneten Maßnahmen ergriffen werden, um die nachteiligen Auswirkungen auf den Gewässerzustand zu verringern“.

Zur Berücksichtigung des Urteils des EuGH vom 01.07.2015 (Rs. C-461/13)

4 Methodische Grundlagen

4.1 Auswahl der durch das Vorhaben betroffenen Oberflächen- und Grundwasserkörper

Berücksichtigt werden die im Wirkbereich des Vorhabens gelegenen Oberflächen- und Grundwasserkörper.

4.2 Oberflächenwasserkörper

4.2.1 Beschreibung und Bewertung des ökologischen Zustands/Potenzials und des chemischen Zustands

Bewertung des ökologischen Zustands/des ökologischen Potenzials gemäß OGewV

Bei natürlichen Wasserkörpern (Natural water body, NWB) ist der ökologische Zustand eines Oberflächenwasserkörpers durch die zuständige Behörde nach Maßgabe der Tabellen 1 bis 5 der Anlage 4 der OGewV in die Klassen „sehr guter“, „guter“, „mäßiger“, „unbefriedigender“ oder „schlechter“ Zustand einzustufen.

hydromorphologischen sowie chemischen und physikalisch-chemischen QK jedoch unmittelbar zu einer Verschlechterung der Gesamtbewertung des ökologischen Zustands/des ökologischen Potenzials (bzw. Herabstufung einer Zustands-/Potenzialklasse):

- **Hydromorphologische QK** sind für die Einstufung des „sehr guten Zustandes“ und des „höchsten ökologischen Potenzials“ heranzuziehen. Der „sehr gute Zustand“ gilt als erreicht, wenn es keine Hinweise auf störende anthropogene Einflüsse gibt. Bei den anderen Zustandsklassen müssen die hydromorphologischen QK „Bedingungen aufweisen, unter denen die für die biologischen Qualitätskomponenten beschriebenen Werte erreicht werden können“ (OGewV, Anlage 4, Tabelle 2 zu WRRL Anhang V, Nr. 1.2.1). Das „höchste ökologische Potenzial“ gilt als erreicht, wenn die hydromorphologischen Bedingungen so beschaffen sind, „...dass sich die Einwirkungen auf das Oberflächengewässer auf die Einwirkungen beschränken, die von den künstlichen oder erheblich veränderten Eigenschaften des Gewässers herrühren, nachdem alle Gegenmaßnahmen getroffen worden sind, um die beste Annäherung an die ökologische Durchgängigkeit sicherzustellen, insbesondere hinsichtlich der Wanderungsbewegungen der Fauna und angemessener Laich- und Aufzuchträume.“ Bei den anderen Potenzialklassen müssen die hydromorphologischen QK „Bedingungen aufweisen, unter denen die für die biologischen Qualitätskomponenten beschriebenen Werte erreicht werden können“ (OGewV, Anlage 4, Tabelle 2 und 6 zu WRRL Anhang V, Nr. 1.2.5).

Auswahl der zu untersuchenden Qualitätskomponenten gemäß OGewV

Abhängig von der Kategorie des OWK (Flüsse, Übergangs- und Küstengewässer) werden für die Beschreibung und Bewertung unterschiedliche Qualitätskomponenten bzw. Parameter berücksichtigt (Tabelle 4.2-1 und Tabelle 4.2-2).

Tabelle 4.2-1: Biologische Qualitätskomponenten (QK) der Oberflächengewässer-Kategorien Flüsse, Übergangsgewässer und Küstengewässer

<table>
<thead>
<tr>
<th>Qualitätskomponenten- gruppe</th>
<th>Qualitätskomponente</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewässerflora</td>
<td>Phytoplankton</td>
<td>Artenzusammensetzung, Biomasse</td>
</tr>
<tr>
<td></td>
<td>Großalgen oder Angiospermen</td>
<td>Artenzusammensetzung, Artenhäufigkeit</td>
</tr>
<tr>
<td></td>
<td>Makrophyten/ Phytobenthos</td>
<td>Artenzusammensetzung, Artenhäufigkeit</td>
</tr>
<tr>
<td>Gewässerfauna</td>
<td>Bentische wirbellose Fauna</td>
<td>Artenzusammensetzung, Artenhäufigkeit</td>
</tr>
<tr>
<td></td>
<td>Fischfauna</td>
<td>Artenzusammensetzung, Artenhäufigkeit, Altersstruktur<sup>3)</sup></td>
</tr>
</tbody>
</table>

Erläuterungen:

¹⁾ Bei planktondominierten Fließgewässern zu bestimmen.
²⁾ Zusätzlich zu Phytoplankton ist die jeweils geeignete Qualitätskomponente zu bestimmen.
³⁾ Altersstruktur im Übergangsgewässer fakultativ.

Abundanz = Anzahl der Individuen einer Art/Fläche oder Raumeinheit (Volumen)
Tabelle 4.2-2: Hydromorphologische und physikalisch-chemische Qualitätskomponenten (QK) der Kategorien Flüsse, Übergangs- und Küstengewässer in Unterstützung der biologischen Komponenten

<table>
<thead>
<tr>
<th>Qualitätskomponentengruppe</th>
<th>Parameter</th>
<th>Flüsse</th>
<th>Übergangs-</th>
<th>Küsten-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserhaushalt</td>
<td>Abfluss und Abflussdynamik</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Verbindung zu Grundwasserkörpern</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Durchgängigkeit des Flusses</td>
<td>Tiefen- und Breitenvariation</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tiefenvariation</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Struktur und Substrat des Bodens</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Menge, Struktur und Substrat des Bodens</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Struktur der Uferzone</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Struktur der Gezeitenzone</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tideregime</td>
<td>Süßwasserzustrom</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Seegangsbelastung</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Richtung vorherrschender Strömungen</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

Chemische Qualitätskomponenten gem. Anlage 3 Nr. 3.1 OGewV

<table>
<thead>
<tr>
<th>Qualitätskomponentengruppe</th>
<th>Qualitätskomponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flussgebietsspezifische</td>
<td>synthetische u. nichtsynthetische Schadstoffe (^1) (bei Eintrag in signifikanten Mengen) in Wasser, Sedimenten, Schwebstoffen oder Biota</td>
</tr>
<tr>
<td>Schadstoffe</td>
<td>X (\times) X (\times) X</td>
</tr>
</tbody>
</table>

Allgemeine physikalisch-chemische Qualitätskomponenten gem. Anlage 3 Nr. 3.2 OGewV

<table>
<thead>
<tr>
<th>Qualitätskomponentengruppe</th>
<th>Qualitätskomponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine physikalisch-</td>
<td>Sichttiefe</td>
</tr>
<tr>
<td>chemische Komponenten</td>
<td>- (\times) X (\times) X</td>
</tr>
<tr>
<td></td>
<td>Temperaturverhältnisse</td>
</tr>
<tr>
<td></td>
<td>X (\times) X (\times) X</td>
</tr>
<tr>
<td></td>
<td>Sauerstoffhaushalt</td>
</tr>
<tr>
<td></td>
<td>X (\times) X (\times) X</td>
</tr>
<tr>
<td></td>
<td>Salzgehalt</td>
</tr>
<tr>
<td></td>
<td>X (\times) X (\times) X</td>
</tr>
<tr>
<td></td>
<td>Versauerungszustand</td>
</tr>
<tr>
<td></td>
<td>X (\times) X</td>
</tr>
<tr>
<td></td>
<td>Nährstoffverhältnisse</td>
</tr>
<tr>
<td></td>
<td>X (\times) X</td>
</tr>
</tbody>
</table>

Erläuterungen:
\(^1\) = Schadstoffe nach Anlage 5 der OGewV

Die Auflistung entspricht der Parameterliste nach Anhang V 1.1.1, 1.1.3 und 1.1.4 und den landesrechtlichen Verordnungen der Bundesländer Niedersachsen, Schleswig-Holstein und Hamburg zur Umsetzung der Anhänge II, III und V der WRRL.

Beschreibung der Oberflächenwasserkörper gemäß WRRL Anhang II Nr. 1.2.1 und 1.2.3 (System B)
Gemäß den Vorgaben der WRRL sind zur Beschreibung von Oberflächenwasserkörpern nach System B (WRRL Anhang II Nr. 1.2.1 und 1.2.3) obligatorische und optionale Faktoren heranzuziehen. Dies erfolgt in Kapitel 6.2 unter Benennung der jeweils genutzten Quellen.

Berücksichtigung der Ergebnisse der Zustands-/Potenzialbewertung der Qualitätskomponenten gemäß Bewirtschaftungsplan

„Maßgeblich für die Prüfung, ob eine Verschlechterung zu erwarten ist, ist grundsätzlich der Zustand des Wasserkörpers, wie in dem zum Zeitpunkt der Prüfung geltenden Bewirtschaftungsplans dokumen-

Bewirtschaftungsplan für den Bewirtschaftungszeitraum 2009–2015 (FGG Elbe 2009)

Bewirtschaftungsplan für den Bewirtschaftungszeitraum 2016–2021 (FGG Elbe 2014a, Entwurf)

Vorgehensweise in diesem Fachbeitrag:

Ergänzung der Bewertung der unterstützend zu betrachtenden Qualitätskomponenten
Nicht für alle in Tabelle 4.2-2 aufgezeigten Qualitätskomponenten/Parameter liegen Bewertungsergebnisse im Kontext der Wasserrahmenrichtlinie vor. Es wird wie folgt vorgegangen:

1. Es wird geprüft, ob Bewertungsverfahren zur Einstufung des Zustands/des Potenzials vorliegen.
2. Sofern dies der Fall ist, erfolgt darauf aufbauend eine hilfsweise und ergänzende Einstufung des Zustands/des Potenzials.
3. Sofern dies nicht der Fall ist, wird die Einstufung/Bewertung hilfsweise und ergänzend fachlich hergeleitet. Die jeweils herangezogenen Quellen und Methoden zu den einzelnen Qualitätskomponenten dokumintiert.

4.2.2 Prüfung von Verschlechterungen des ökologischen Zustands/Potenzials und des chemischen Zustands
Die Prüfung einer Verschlechterung nach §§ 27 und 44 WHG erfolgt, differenziert für die vom Vorhaben betroffenen Oberflächenwasserkörper, in Kapitel 6.2.3. Dabei werden der ökologische Zustand (das ökologische Potenzial) und der chemische Zustand unterschieden.
Auslegung des Verschlechterungsbegriffs (§§ 27, 44 WHG)

Der Auslegung des Verschlechterungsbegriffs liegt in diesem Fachbeitrag das Urteil des EuGH vom 01.07.2015 (Rs. C-461/13) zugrunde. Demnach ist die „kombinierte Zustandsklassen-/Status-quo-Theorie“ im Hinblick auf das Verschlechterungsverbot anzuwenden. Es gilt:

- Nicht jede nachteilige Veränderung des Gewässerzustands ist zugleich eine Verschlechterung.
- Ist jedoch eine Qualitätskomponente bereits in der niedrigsten Stufe eingeordnet, stellt jede Verschlechterung dieser Komponente eine Verschlechterung eines OWK i. S. v. Art. 4 Abs. 1 Buchstabe a Ziff i der WRRL dar.

Beschreibung und Bewertung vorhabensbedingt nachteiliger Veränderungen des ökologischen Zustands/des Potenzials und des chemischen Zustands von Oberflächenwasserkörpern

Schema zur generellen Vorgehensweise

<table>
<thead>
<tr>
<th>Schritt I</th>
<th>Schritt II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Zustands/Potenzialbewertung der unterstützenden Qualitätskomponenten (zur Vorgehensweise s. Kap. 4.2.1)</td>
<td>Übertrag auf die biologische QK: Werden Effekte auf biologische QK ausgelöst, bei denen ein Abweichen vom Status quo oder eine veränderte Einstufung der Zustands- bzw. Potenzialbewertung nicht auszuschließen sind?</td>
</tr>
<tr>
<td>b) Beschreibung und Bewertung vorhabensbedingt zu erwartender Veränderungen der unterstützenden hydromorphologischen, chemischen sowie physikalisch-chemischen QK.</td>
<td>a) Zustands-/Potenzialbewertung der biologischen QK (zur Vorgehensweise s. Kap. 4.2.1)</td>
</tr>
<tr>
<td></td>
<td>b) Beschreibung und Bewertung vorhabensbedingter Veränderungen der biologischen QK.</td>
</tr>
</tbody>
</table>

Abbildung 4.2-1: Schema zur generellen Vorgehensweise (Prüfschritte)

Schritt Ib: Hydromorphologische Qualitätskomponenten, chemische und allgemeine physikalisch-chemische Qualitätskomponenten

Es handelt sich bei den „hydromorphologischen“ sowie den „chemischen und physikalisch-chemischen“ Komponenten um so genannte unterstützende Qualitätskomponenten für die Bewertung des Zustands/des Potenzials der einzelnen biologischen QK. Nach UBA (2014) ist eine „...Veränderung der unterstützenden Qualitätskomponenten (hydromorphologische und physikalisch-chemische Komponenten) [...] insbesondere relevant, um Aussagen über eine mögliche Verschlechterung der biologischen Qualitätskomponenten treffen zu können.“ Dies zielt auf indirekte Auswirkungen bzw. Folgewirkungen auf die biologischen QK. Vorhabensbedingte Veränderungen der unterstützenden QK werden verbal-argumentativ bewertet.

Somit ist zu untersuchen, ob vorhabensbedingte Veränderungen auf die unterstützenden QK geeignet sein könnten, die Habitatbedingungen für die biologischen Qualitätskomponenten derart zu verändern, dass ein Abweichen vom Status quo oder eine veränderte Einstufung der Zustands- bzw. Potenzialbewertung nicht auszuschließen ist.

Dabei werden die Ergebnisse der Auswirkungsprognose der Umweltverträglichkeitsstudie (UVS, Planfeststellungsunterlage Teil B.1.) berücksichtigt. Die Aussagen der UVU werden dabei auf die Untersuchung der jeweiligen Qualitätskomponenten übertragen.

Schritt IIb: Biologische Qualitätskomponenten

In diesem Fachbeitrag erfolgt die Untersuchung vorhabensbedingt nachteiliger Veränderungen auf die biologischen Qualitätskomponenten in drei Schritten:

1. Bewertung der biologischen Qualitätskomponenten
 Die Bewertung (Zustand/Potenzial) der in einem Oberflächenwasserkörper untersuchungsrelevanten biologischen Qualitätskomponenten wird dargestellt.

2. Beschreibung vorhabensbedingter Veränderungen der biologischen Qualitätskomponenten
 Die vorhabensbedingt zu erwartenden Veränderungen der in einem Oberflächenwasserkörper untersuchungsrelevanten biologischen Qualitätskomponenten werden beschrieben.
3. Bewertung vorhabensbedingter Veränderungen der biologischen Qualitätskomponenten

Die beschriebenen vorhabensbedingt zu erwartenden Veränderungen der in einem Oberflächenwasserkörper untersuchungsrelevanten biologischen Qualitätskomponenten werden, unter Berücksichtigung der Zustands-/Potenzialbewertung, hinsichtlich einer möglichen Verschlechterung bewertet.

Die Abbildung 4.2-2 gibt einen Überblick über die Vorgehensweise.

Abbildung 4.2-2: Biologische Qualitätskomponenten: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“

<table>
<thead>
<tr>
<th>kombinierte Zustandsklassen-/Status-quo-Theorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung der biologischen Qualitätskomponenten (QK) im OWK</td>
</tr>
<tr>
<td>Ökologischer Zustand</td>
</tr>
<tr>
<td>Ökologisches Potenzial</td>
</tr>
</tbody>
</table>

Beschreibung und Bewertung der vorhabensbedingt zu erwartenden Veränderungen dahingehend,

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>ob diese nachteilig und so deutlich (signifikant) sind, dass eine niedrigere Einstufung einer QK zu erwarten ist (Zustands-/Potenzialklassenwechsel).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folge</td>
<td>Der Wechsel einer biologischen QK in eine niedrigere Klasse (Einstufung) wird als Verschlechterung bewertet.</td>
</tr>
</tbody>
</table>

Wertung einer Verschlechterung des ökologischen Zustands/des Potenzials, wenn die jeweilige biologische Qualitätskomponente im Bewirtschaftungsplan nicht in die niedrigste Klasse („schlecht“) eingestuft worden ist.

Es wird untersucht, ob vorhabensbedingt eine veränderte Einstufung der Qualitätskomponente im Oberflächenwasserkörper zu erwarten ist. Der vorhabensbedingte Wechsel in eine niedrigere Klasse (= Zustands-/Potenzialklassenwechsel) wäre als Verschlechterung zu bewerten. Grundlage der Untersuchung, ob vorhabensbedingt eine Verschlechterung zu erwarten ist, sind die gemäß der Anlage 3 (1) der OGewV aufgeführten Parameter, die zur Bewertung der biologischen Qualitätskomponenten herangezogen werden (Tabelle 4.2-1). Des Weiteren wird das spezifische Ergebnis der Zustandsbzw. Potenzialbewertung der jeweiligen Qualitätskomponente dargestellt, um erkennbar zu machen, in welchem Abstand zu der nächstniedrigeren Klassengrenze die jeweilige Qualitätskomponente eingestuft wurde.

Es wird die Aktualisierung des Bewirtschaftungsplans (Bewirtschaftungszeitraum 2016-2021, FGG Elbe 2014a) berücksichtigt. Berücksichtigt werden auch die jeweils relevanten Hintergrunddokumente.

Bewertung einer Verschlechterung des ökologischen Zustands/des Potenzials, wenn die jeweilige biologische Qualitätskomponente im Bewirtschaftungsplan in die niedrigste Klasse („schlecht“) eingestuft worden ist.

Es wird untersucht, ob vorhabensbedingt eine weitere nachteilige Veränderung der Qualitätskomponente im Oberflächenwasserkörper zu erwarten ist. Den Vorgaben des EuGH-Urteils vom 01.07.2015 (Rs. C-461/13, Rn. 70) wird gefolgt. Demnach „...stellt jede Verschlechterung dieser Komponente eine „Verschlechterung des Zustands“ eines Oberflächenwasserkörpers im Sinne von Art. 4 Abs. 1 Buchst. a Ziff. i dar.“
Es wird die vorliegende Aktualisierung des Bewirtschaftungsplans (Bewirtschaftungszeitraum 2016-2021, FGG Elbe 2014a) berücksichtigt. Berücksichtigt werden auch die jeweils relevanten Hintergrunddokumente.

Chemischer Zustand

In diesem Fachbeitrag erfolgt die Untersuchung vorhabensbedingt nachteiliger Veränderungen des chemischen Zustands in drei Schritten:

1. Bewertung des chemischen Zustands im jeweiligen OWK
 Es wird die Bewertung des chemischen Zustands in einem Oberflächenwasserkörper dargestellt.

2. Beschreibung vorhabensbedingter Veränderungen des chemischen Zustands
 Die vorhabensbedingt zu erwartenden Veränderungen des chemischen Zustands in einem Oberflächenwasserkörper werden beschrieben.

3. Bewertung vorhabensbedingter Veränderungen des chemischen Zustands
 Die beschriebenen vorhabensbedingt zu erwartenden Veränderungen des chemischen Zustands in einem Oberflächenwasserkörper werden, unter Berücksichtigung der Zustandsbewertung, hinsichtlich einer möglichen Verschlechterung bewertet.

Die Abbildung 4.2-3 zeigt einen Überblick über die Vorgehensweise.

Abbildung 4.2-3: Chemischer Zustand: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“

<table>
<thead>
<tr>
<th>kombinierte Zustandsklassen-/Status quo-Theorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung des chemischen Zustands eines OWK</td>
</tr>
<tr>
<td>Chemischer Zustand</td>
</tr>
</tbody>
</table>

Beschreibung und Bewertung der vorhabensbedingt zu erwartenden Veränderungen dahingehend,

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>ob prioritäre und prioritär gefährliche Stoffe in signifikanten Mengen eingeleitet (eingetragen) werden. Führt dies möglicherweise zu einer Überschreitung der Klassengrenze einer UQN des chemischen Zustands von „gut“ nach „nicht gut“?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folge</td>
<td>Die Überschreitung einer bislang nicht überschrittenen UQN im OWK löst eine Verschlechterung aus.</td>
</tr>
<tr>
<td></td>
<td>ob ein weiterer Eintrag von Schadstoffen erfolgt, die im Ist-Zustand bereits UQN überschritten und ursächlich für den „nicht guten“ chemischen Zustand sind.</td>
</tr>
<tr>
<td></td>
<td>Jeder weitere Eintrag löst eine Verschlechterung aus.</td>
</tr>
</tbody>
</table>

Vorübergehende und andauernde Veränderungen

Zur Beschreibung einer Veränderung einer biologischen Qualitätskomponente und des chemischen Zustands wird zwischen „vorübergehenden“ und „andauernden“ Veränderungen unterschieden. LAWA 2013a (dort unter Pkt. 12, das Thesenpapier hat keine Seitenzahlen) führt aus, dass vorübergehende „Ebineinträchigung (sowohl innerhalb einer Zustandsklasse als auch bei kurzzeitigem Klassenwechsel) […] nach den unter Ziffer 11 (1) und (2) dargestellten Auffassungen aus Gründen der Verhältnismäßigkeit außer Betracht bleiben, wenn mit Sicherheit davon auszugehen ist, dass sich der

Lokale bis großräumige Veränderungen
Bezugsraum ist jeweils der Oberflächenwasserkörper in seiner offiziellen Abgrenzung. Bei der Bearbeitung einzelner Qualitätskomponenten werden sowohl flächenbezogene als auch fallweise volumenbezogene Ansätze herangezogen. Dabei werden absolute und relative Flächen- oder Volumenbezüge verwendet, um Auswirkungen des Vorhabens möglichst konkret beschreiben zu können.

4.2.3 Schadensmindernde Maßnahmen/Vorkehrungen
Die vorgesehenen Maßnahmen/Vorkehrungen zur Schadensbegrenzung, -minimierung oder -beseitigung werden benannt. Es wird dargelegt, auf welche Qualitätskomponenten diese wirken und damit zur Verminderung nachteiliger Auswirkungen auf die Ziele der WRRL beitragen (s. Kapitel 8).

4.2.4 Prüfung von Gefährdungen der Zielerreichung des guten ökologischen Zustands/Potenzials und des guten chemischen Zustands

Die Ergebnisse der Prüfung vorhabensbedingter Verschlechterungen des ökologischen Zu-
stands/Potenzials und des chemischen Zustands (Kapitel 6.2.3) werden dabei berücksichtigt.
4.3 Grundwasserkörper

4.3.1 Beschreibung und Bewertung des mengenmäßigen und chemischen Zustands

Das Bewertungsergebnis zum mengenmäßigen und chemischen Zustand wird unter Berücksichtigung der vorliegenden Aktualisierung des Bewirtschaftungsplans 2016-2021 (FGG Elbe 2014a) dargestellt.

4.3.2 Prüfung von Verschlechterungen des mengenmäßigen und chemischen Zustands

Rechtliche Grundlagen

Das wesentliche Ziel für das Schutzgut Grundwasser ist durch Art. 4 WRRL und § 47 WHG vorgegeben:

Das Grundwasser ist so zu bewirtschaften, dass

1. eine Verschlechterung seines mengenmäßigen und seines chemischen Zustands vermieden wird;
2. alle signifikanten und anhaltenden Trends ansteigender Schadstoffkonzentrationen aufgrund der Auswirkungen menschlicher Tätigkeiten umgekehrt werden;
3. ein guter mengenmäßiger und ein guter chemischer Zustand erhalten oder erreicht werden; zu einem guten mengenmäßigen Zustand gehört insbesondere ein Gleichgewicht zwischen Grundwasserentnahme und Grundwasserneubildung."

Methodische Grundlagen

Mengenmäßiger Zustand des Grundwassers

Die Vorgehensweise zur Beurteilung vorhabensbedingter Veränderungen erfolgt auf Ebene der Grundwasserkörper (GWK) in drei Schritten:

1. Bewertung des mengenmäßigen Zustands im jeweiligen GWK
 Es wird die Bewertung des mengenmäßigen Zustands in einem Grundwasserkörper dargestellt.
2. Beschreibung vorhabensbedingter Veränderungen des mengenmäßigen Zustands
 Die vorhabensbedingt zu erwartenden Veränderungen des mengenmäßigen Zustands eines Grundwasserkörpers werden beschrieben.
3. Bewertung vorhabensbedingter Veränderungen des mengenmäßigen Zustands
Die beschriebenen vorhabensbedingt zu erwartenden Veränderungen des mengenmäßigen Zustands eines Grundwasserkörpers werden, unter Berücksichtigung der Zustandsbewertung, hinsichtlich einer möglichen Verschlechterung bewertet.

Die Abbildung 4.3-1 gibt einen Überblick über die Vorgehensweise.

Abbildung 4.3-1: Mengenmäßiger Zustand des Grundwassers: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“

<table>
<thead>
<tr>
<th>kombinierte Zustandsklassen-/Status-quo-Theorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung des mengenmäßigen Zustands eines GWK</td>
</tr>
<tr>
<td>Mengenmäßiger Zustand</td>
</tr>
</tbody>
</table>

Beschreibung und Bewertung der vorhabensbedingt zu erwartenden Veränderungen dahingehend,

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Folge</td>
<td>Der Wechsel in die niedrigere Klasse (Einstufung) wird als Verschlechterung bewertet.</td>
<td>Jede weitere nachteilige Veränderung wird als Verschlechterung bewertet.</td>
</tr>
</tbody>
</table>

Chemischer Zustand des Grundwassers

Der chemische Zustand des Grundwassers wird gemäß GrwV hinsichtlich der aktuellen Überschreitung von Umweltqualitätsnormen als auch hinsichtlich zeitlicher Trends charakterisiert. Es gelten unter der Berücksichtigung von Hintergrundwerten und flächenbezogenen Voraussetzungen Schwellenwerte nach Anlage 2 der GrwV.

Bei Einhaltung der Schwellenwerte oder wenn es keine Anzeichen für Einträge aufgrund menschlicher Tätigkeiten gibt, die Grundwasserbeschaffenheit keine signifikante Verschlechterung des ökologischen oder chemischen Zustands der Oberflächengewässer zur Folge hat und die Grundwasserbeschaffenheit nicht zu einer signifikanten Schädigung unmittelbar von dem Grundwasserkörper abhängiger Landökosysteme führt, wird der chemische Zustand insgesamt mit „gut“ bewertet. Andernfalls erfolgt, unter Berücksichtigung von flächenbezogenen Voraussetzungen, die Bewertung als „schlecht“.

Die Vorgehensweise zur Beurteilung vorhabensbedingt möglicher nachteiliger Veränderungen erfolgt auf Ebene der Grundwasserkörper (GWK) in drei Schritten:

1. **Bewertung des chemischen Zustands im jeweiligen GWK**
 Es wird die Bewertung des chemischen Zustands in einem Grundwasserkörper dargestellt.
2. **Beschreibung vorhabensbedingter Veränderungen des chemischen Zustands**
 Die vorhabensbedingt zu erwartenden Veränderungen des chemischen Zustands eines Grundwasserkörpers werden beschrieben.
3. **Bewertung vorhabensbedingter Veränderungen des chemischen Zustands**
 Die beschriebenen vorhabensbedingt zu erwartenden Veränderungen des chemischen Zustands eines Grundwasserkörpers werden, unter Berücksichtigung der Zustandsbewertung, hinsichtlich einer möglichen Verschlechterung bewertet.

Die Abbildung 4.3-2 gibt einen Überblick über die Vorgehensweise.
Abbildung 4.3-2: Chemischer Zustand des Grundwassers: Schema zur Bearbeitung der „kombinierten Zustandsklassen-/Status quo-Theorie“

<table>
<thead>
<tr>
<th>kombinierte Zustandsklassen-/</th>
<th>Status-quo-Theorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung des chemischen Zustands eines GWK</td>
<td></td>
</tr>
<tr>
<td>Chemischer Zustand</td>
<td>gut</td>
</tr>
<tr>
<td>Beschreibung und Bewertung der vorhabensbedingt zu erwartenden Veränderungen dahingehend,</td>
<td></td>
</tr>
<tr>
<td>Folge</td>
<td>Die Überschreitung eines bislang nicht überschrittenen Schwellenwertes im GWK löst eine Verschlechterung aus.</td>
</tr>
</tbody>
</table>

Hinweis:

4.3.3 Prüfung von Gefährdungen der Zielerreichung des guten mengenmäßigen und guten chemischen Zustands

Vergleichbar wie zu den Oberflächenwasserkörpern werden die in den vorliegenden Maßnahmenprogrammen benannten Maßnahmen für das Grundwasser benannt und die mögliche Gefährdung der Zielerreichung untersucht.
4.4 Zur Berücksichtigung eines volumen- oder flächenbezogenen Maßstabs

Nachfolgend wird für jede einzelne Qualitätskomponente dargestellt, ob ein flächen- und/oder volumenbezogener Ansatz sachangemessen ist (Tabelle 4.4-1 und Tabelle 4.4-2).

Tabelle 4.4-1: Darstellung zur sachangemessenen Vorgehensweise bei der Bestandsbeschreibung und -bewertung von biologischen Qualitätskomponenten (flächen- oder volumenbezogener Maßstab)

<table>
<thead>
<tr>
<th>Biologische Qualitätskomponenten gemäß Anlage 3 Nr. 1 OGeWV</th>
<th>Flächenbezug</th>
<th>Volumenbezug</th>
<th>Sachangemessene Vorgehensweise bei Bestandsbeschreibung und Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewässerflora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualitätskomponentengruppe</td>
<td>Qualitätsskomponente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoplankton</td>
<td>x</td>
<td>x</td>
<td>Die Beschreibung und Bewertung erfolgt volumen- bzw. konzentrationsbezogen.</td>
</tr>
<tr>
<td>Großalgen oder Angiospermen</td>
<td>x</td>
<td>-</td>
<td>Die Beschreibung und Bewertung erfolgt u. a. auf Biotopbasis und damit flächenbezogen.</td>
</tr>
<tr>
<td>Makrophyten/Phytobenthos</td>
<td>x</td>
<td>-</td>
<td>Die Beschreibung und Bewertung erfolgt u. a. auf Biotopbasis und damit flächenbezogen. Für die QK Phytobenthos sind zudem bestimmte Habitatqualitäten von Belang (z. B. Sichttiefe).</td>
</tr>
<tr>
<td>Gewässerfauna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthische wirbellose Fauna</td>
<td>x</td>
<td>-</td>
<td>Die benthische wirbellose Fauna umfasst die in/auf der Bodenzone eines Gewässers lebenden wirbellosen Kleinlebewesen. Die Beschreibung und Bewertung erfolgt flächenbezogen.</td>
</tr>
<tr>
<td>Fischfauna</td>
<td>x</td>
<td>x</td>
<td>Die Beschreibung und Bewertung erfolgt sowohl flächen- als auch volumenbezogen.</td>
</tr>
</tbody>
</table>
Tabelle 4.4-2: Darstellung zur sachangemessenen Vorgehensweise bei der Bestandsbeschreibung und -bewertung der unterstützend heranzuziehenden Komponenten (flächen- oder volumenbezogener Maßstab)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Flächen- bezug</th>
<th>Volumen- bezug</th>
<th>Sachangemessene Vorgehensweise bei Bestandsbeschreibung und Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserhaushalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abfluss und Abflussdynamik</td>
<td>- x</td>
<td>Die Beschreibung und Bewertung erfolgt volumenbezogen (Volumen pro Zeiteinheit).</td>
<td></td>
</tr>
<tr>
<td>Verbindung zu Grundwasserkörpern</td>
<td>x x</td>
<td>Die Beschreibung und Bewertung erfolgt volumenbezogen. Die Fläche ist zudem von Belang als Austauschfläche zwischen Oberflächenwasser und Grundwasser.</td>
<td></td>
</tr>
<tr>
<td>Durchgängigkeit des Flusses</td>
<td>- -</td>
<td>Weder volumen- noch flächenbezogen</td>
<td></td>
</tr>
<tr>
<td>Morphologie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefen- und Breitenvariation</td>
<td>x x</td>
<td>Die Beschreibung und Bewertung erfolgt in erster Linie flächenbezogen, fallweise auch volumenbezogen.</td>
<td></td>
</tr>
<tr>
<td>Tiefenvariation</td>
<td>x x</td>
<td>Die Beschreibung und Bewertung erfolgt in erster Linie flächenbezogen, fallweise auch volumenbezogen.</td>
<td></td>
</tr>
<tr>
<td>Menge, Struktur und Substrat des Bodens</td>
<td>- x</td>
<td>Zum Parameter „Menge“ ist an dieser Stelle der volumenbezogene Ansatz zu ergänzen.</td>
<td></td>
</tr>
<tr>
<td>Struktur der Uferzone</td>
<td>x -</td>
<td>Die Beschreibung und Bewertung erfolgt flächenbezogen. „Struktur“ ist dabei vergleichbar mit dem biotopbezogenen Ansatz bzw. dem Einfluss einer anthropogenen Überprägung.</td>
<td></td>
</tr>
<tr>
<td>Tideregime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süßwasserzustrom</td>
<td>- x</td>
<td>Die Beschreibung und Bewertung erfolgt volumenbezogen.</td>
<td></td>
</tr>
<tr>
<td>Seegangsbelastung</td>
<td>x -</td>
<td>Die Seegangsbelastung hat Folgewirkungen auf Flächen, Strecken bzw. auf morphologische Parameter (z. B. „Struktur der Uferzone“).</td>
<td></td>
</tr>
<tr>
<td>Richtung vorherrschender Strömungen</td>
<td>- -</td>
<td>Weder volumen- noch flächenbezogen</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 17.12.2015
<table>
<thead>
<tr>
<th>Flächenbezug</th>
<th>Volumenbezug</th>
<th>Sachangemessene Vorgehensweise bei Bestandsbeschreibung und Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemische Qualitätskomponenten gem. Anlage 3 Nr. 3.1 OGewV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualitätskomponentengruppe</td>
<td>Qualitätskomponente</td>
<td></td>
</tr>
<tr>
<td>Flussgebietspezifische Schadstoffe</td>
<td>synthetische u. nichtsynthetische Schadstoffe (1)</td>
<td>x</td>
</tr>
</tbody>
</table>

| Allgemeine physikalisch-chemische Komponenten gem. Anlage 3 Nr. 3.2 OGewV |
Qualitätskomponentengruppe	Qualitätskomponente			
Allgemeine physikalisch-chemische Komponenten	Sichttiefe	-	x	Die Beschreibung und Bewertung erfolgt volumenbezogen insoweit es um die Schwebstoffkonzentration geht (Masse pro Volumen).
	Temperaturverhältnisse	-	-	Weder volumen- noch flächenbezogen
	Sauerstoffhaushalt	-	x	Die Beschreibung und Bewertung erfolgt in erster Linie volumenbezogen (Sauerstoffkonzentrationen, spezifische Wasseroberfläche = Verhältnis Wasseroberfläche zu Wasservolumen).
	Salzgehalt	(x)	x	Die Beschreibung und Bewertung erfolgt volumenbezogen (Masse Salz pro Volumen). Fallweise wird ein flächenbezogener Ansatz (z. B. räumliche Veränderungen von Salinitäten) gewählt.
	Versauerungszustand	-	x	Die Beschreibung und Bewertung erfolgt volumenbezogen.
	Nährstoffverhältnisse	-	x	Die Beschreibung und Bewertung erfolgt volumenbezogen (Konzentration, z. B. mg/l).

Erläuterung: (1) Gilt ebenso für den chemischen Zustand.

Bei der Prognose vorhabensbedingt möglicher nachteiliger Veränderungen auf eine Qualitätskomponente (Kapitel 6 und 7) wird davon nicht abgewichen.
5 Kurzbeschreibung des Vorhabens

Das Vorhaben wird in der Antragsunterlage A.3 (Vorhabensbeschreibung) zum Planfeststellungsantrag ausführlich beschrieben. Eine Darstellung der umweltrelevanten Wirkfaktoren enthält zudem die UVS (IBL Umweltplanung 2009, Antragsunterlage B.1, Kap. 2.4, S. 26 ff.).

Das Vorhaben beinhaltet folgende bauliche Maßnahmen:

- Errichtung einer Kaianlage mit einer Gesamtlänge von ca. 1.050 m entlang der nördlichen (Bubendey-Ufer) und östlichen (Parkhafen) Grundstücksgrenze in insgesamt drei Bauabschnitten (davon zwei Land- und eine Wasserbaustelle),
- Herstellung von jeweils ca. 60 m breiten Liegeplätzen entlang der neuen Kaimauer (Solltiefe NN -17,7 m; im Bereich Parkhafen darüber hinaus mit einer Tiefe von NN -18,8 m bzw. im Bereich der Sedimentrinne mit NN -20,8 m),
- Aufweitung des bestehenden Drehkreises in der Elbe von 480 m auf 600 m, Vertiefung im Erweiterungsbereich auf die zukünftige Soll-Tiefe der Fahrrinne von NN -17,3 m,
- Entnahme von ca. 3 Mio. m³ Boden,
- Verfüllung des Petroleumhafens zur Herstellung der neuen Hafenbetriebsfläche, dabei Einbau eines Fangdamms zur Unterteilung und Abgrenzung der Fläche von der Elbe, Einbau von ca. 2 Mio. m³ Boden (Sand, Mischboden) weitgehend aus der Bodenentnahme auf dem Gelände vor Ort,
- Durchführung umfangreicher Rückbaumaßnahmen von vorhandenen Gründungen, Oberflächenbefestigungen, Deckwerken, Hochwasserschutzwänden, Anlegebrücken, Leitungen, Gleisen etc.,
- Errichtung einer temporären Hochwasserschutzwand landseitig der geplanten Kaitrasse,
- Neubau der Ober- und Unterfeuer für die Richtfeuerlinie am Bubendey-Ufer,
- Errichtung einer neuen Radarstation am nördlichen Elbufer und
- Versetzen der Radarstation Parkhafen an das südöstliche Ende des Waltershofer Hafens.
6 Oberflächenwasserkörper

6.1 Identifizierung der betroffenen Oberflächenwasserkörper

6.1.1 Räumliche Lage des Vorhabens im Koordinierungsraum Tideelbe

Das Vorhaben ist in der FGE Elbe (Koordinierungsraum Tideelbe)14 im Bereich des OWK Hafen (Abbildung 6.1-1) geplant.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{vorhaben_lage_tideelbe.png}
\caption{Lage des Vorhabens im Koordinationsraum Tideelbe (ohne Küstengewässer)}
\end{figure}

\textit{Erläuterung:} Der rote Pfeil zeigt die ungefähre Lage des Vorhabens im OWK Hafen

\textit{Quelle: ARGE Elbe (2004), angepasst durch IBL Umweltplanung}

6.1.2 Untersuchungsrelevante Vorhabenswirkungen

Mess- und beobachtbare Veränderungen

Tabelle 6.1-1 gibt eine Übersicht über die zu erwartenden mess- und beobachtbaren wasserseitigen Wirkungen des geplanten Vorhabens. Unter Berücksichtigung der Wirkreichweite erfolgt die Zuordnung zu den betroffenen OWK. Im Abgleich der Ergebnisse der UVS (IBL Umweltplanung 2009) erfolgt zudem die Zuordnung zu der jeweils zu untersuchenden Qualitätskomponente.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Mess- und beobachtbare Veränderungen} & \\
\hline
\textbf{Tabelle 6.1-1 gibt eine Übersicht über die zu erwartenden mess- und beobachtbaren wasserseitigen Wirkungen des geplanten Vorhabens. Unter Berücksichtigung der Wirkreichweite erfolgt die Zuordnung zu den betroffenen OWK. Im Abgleich der Ergebnisse der UVS (IBL Umweltplanung 2009) erfolgt zudem die Zuordnung zu der jeweils zu untersuchenden Qualitätskomponente.} & \\
\hline
\end{tabular}
\end{table}

14 Die internationale Flussgebietseinheit Elbe ist in zehn Koordinierungsräume gegliedert. Deutschland ist für fünf Koordinierungsräume federführend zuständig (Tideelbe, Mittlere Elbe/Elde, Havel, Saale und Mulde-Elbe-Schwarze Elster).

Definition von Flussgebietseinheit nach WRRL, Artikel 2, Nr. 15: "... ein gemäß Artikel 3 Absatz 1 (WRRL) als Haupteinheit für die Bewirtschaftung von Einzugsgebieten festgelegtes Land- oder Meeresgebiet, das aus einem oder mehreren benachbarten Einzugsgebieten und den ihnen zugeordneten Grundwässern und Küstengewässern besteht"
Tabelle 6.1-1: Vorhabenswirkungen (mess- und beobachtbare Veränderungen)

<table>
<thead>
<tr>
<th>Vorhabenswirkung (Phase)</th>
<th>Wirksbereich mess- und beobachtbarer Veränderungen</th>
<th>Betroffene Oberflächenwasserkörper</th>
<th>Betroffene Qualitätskomponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächeninanspruchnahme (anlage- und betriebsbedingt)</td>
<td>auf Vorhabensfläche begrenzt</td>
<td>Hafen</td>
<td>Gewässerflora, Gewässerfauna, Morphologie</td>
</tr>
</tbody>
</table>

Kurzbeschreibung der Vorhabenswirkung:
- wasserseitig: Herstellung von Liegewannen, Zufahrtsbereichen und Sedimentrinne sowie Erweiterung des Wendekreises (Vertieftung der Gewässersohle im Erweiterungsbereich) einschließlich einer regelmäßigen Unterhaltung
- Umwandlung von Land- zu Gewässerbereichen (Abgrabung Landspitze Parkhafen) und umgekehrt (Verfüllung des Petroleumhafens): insgesamt ca. 5,5 ha Verlust von Wasserfläche

Veränderung der Tidestromung (anlagebedingt)
- unmittelbarer Vorhabensbereich Parkhafen/Bubendey-Ufer (Elbe-km 628)
- Elbe-Hauptstrom Höhe Elbe-km 625

Kurzbeschreibung der Vorhabenswirkung:
Von BAW (2008) wurden im Ergebnis der Modellierung ablesbarer Veränderungen hinsichtlich der mittleren Tidestromungen festgestellt:
- Abnahme der mittl. Ebbe- und Flutstromgeschwindigkeit um bis zu –9 cm/s an der Einfahrt Parkhafen bei Elbe-km 628,
- Abnahme der mittl. max. Ebbe- und Flutströmung im Bereich Bubendey-Ufer/Parkhafen um –11 cm/s bei Elbe-km 628
- Zunahme der mittl. max. Flutstromgeschwindigkeit oberhalb des Bereiches Bubendey-Ufer/Parkhafen (ca. Höhe Elbe-km 625) um +4 cm/s

Unterwasserschallimmissionen (baubedingt)
- < 1.000 m

Kurzbeschreibung der Vorhabenswirkung:
Schallemissionen durch Baubetrieb (worst case-Szenario): Bauzeit 6-20 Uhr, bis ca. 6 Jahre mit versch. Bauverfahren, emissionsstärkstes Bauverfahren: 129 dB(A) an der Schallquelle (Rüttel-Injektionsverfahren)

Eintrag von Sedimenten (bau- und betriebsbedingt)
- auf unmittelbaren Vorhabensbereich begrenzt,
- Zudem sind Freisetzungen größerer Sedimentmengen aufgrund der gewählten Bauverfahren ausgeschlossen.

Kurzbeschreibung der Vorhabenswirkung:
Erhöhte Wassertrübung in der Elbe während der Bauphase und bei Unterhaltungsarbeiten; Trübungsfahnen in der Elbe (keine quantifizierbaren Angaben möglich)

Eintrag von Schadstoffen in das Wasser (baubedingt)
- Aufgrund der zu erwartenden kurzfristigen Verdünnung sind ggf. mess- und beobachtbare Veränderungen auf den unmittelbaren Vorhabensbereich begrenzt.
- Eine räumliche Ausbreitung wird zudem durch geeignete Maßnahmen (s. Kap. 2.5.4, S. 39 in Antragsunterlage A.3) minimiert.

Kurzbeschreibung der Vorhabenswirkung:
mögliche Freisetzung von Schadstoffen bei den Erdarbeiten im Ufer- und Sohlbereich in die Elbe (keine quantifizierbaren Angaben möglich)

Vorhabenswirkung (Fallenwirkung)
- auf Vorhabensfläche begrenzt

Kurzbeschreibung der Vorhabenswirkung:
Vertiefung der Elbesohle (Drehkreis, Liegewannen- und Zufahrtsbereiche) mit Hopperbaggern (Saugbaggern)
Zur Berücksichtigung weiterer nicht mess- und beobachtbarer Veränderungen

In der Tabelle 6.1-2 sind die weiteren OWK benannt, in denen die BAW (2008, Antragsunterlage C.1.2) Veränderungen der Tidewasserstände, Tideströmungen und Salzgehalte, die unterhalb sinnvoll, messtechnisch zu erfassender Schwellenwerte liegen, modelliert. Ergänzend werden diese OWK in die Untersuchung mit einbezogen.

Tabelle 6.1-2: Vorhabenswirkungen (nicht mess- und beobachtbare Veränderungen)

<table>
<thead>
<tr>
<th>Vorhabenswirkung (Phase)</th>
<th>Wirkreichweite der Veränderungen (aus BAW 2008, Antragsunterlage C.1.2)</th>
<th>Betroffene Oberflächenwasserkörper</th>
<th>Betroffene Qualitätskomponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veränderungen der Tidewasserstände</td>
<td>„Durch die untersuchten Maßnahmen ändern sich die Tidewasserstände wie folgt: Das mittlere Tidehochwasser wird zwischen Elbe-Km 730 und 625 um weniger als der Schwellenwert von ±0,01 m verändert. Das mittlere Tideniedrigwasser sinkt zwischen ca. Elbe-Km 718 und Elbe-Km 810 um weniger als der Schwellenwert von -0,01 m ab. Für den mittleren Tidehub ergibt sich ein Anstieg im Bereich zwischen Tidehub ergibt sich ein Anstieg im Bereich zwischen Elbe-Km 690 und Elbe-Km 610 um weniger als der Schwellenwert von 0,01 m.“</td>
<td>Elbe-Ost Hafen Elbe-West Elbe-Übergangsgewässer Elbe-Küstengewässer</td>
<td>Tideregime</td>
</tr>
<tr>
<td>Veränderungen der Tideströmungen</td>
<td>„Ablesbare Änderungen der mittleren Tideströmungen finden nur im Bereich der Vertiefung vor dem Bubendeyufer und der Abbaggerung in der Einfahrt des Parkhafens statt. Die mittlere Ebbestromgeschwindigkeit nimmt dort um bis zu -0,09 m/s ab. Die mittlere Flutstromgeschwindigkeit nimmt dort um bis zu -0,09 m/s ab. Die mittlere maximale Ebbestromgeschwindigkeit ändert sich ablesbar nur im Bereich Bubendeyufer / Parkhafen. Dort beträgt die Abnahme bis zu 0,11 m/s. Die mittlere maximale Flutstromgeschwindigkeit hat die größten Abnahmen im Bereich Bubendeyufer / Parkhafen um bis zu -0,11 m/s, worauf sich in Richtung Oberstrom für ca. 2 km eine Erhöhung um +0,04 m/s anschließt.“</td>
<td>Hafen (s. auch Tabelle 6.1-1)</td>
<td>Tideregime</td>
</tr>
</tbody>
</table>

Hinweise zu hydrologischen Auswirkungen gemäß Antragunterlage C.1.2 (BAW 2008)

Die Auswahl untersuchungsrelevanter Wirkfaktoren zur Hydromorphologie und -dynamik basiert auf der wasserbaulichen Systemanalyse zur Westerweiterung des CTH, die die Auswirkungen des Vorhabens auf die Tidodynamik untersucht (BAW 2008, Antragsunterlage C.1.2). Gegenstand der Untersuchung sind die Parameter Tidewasserstand, Tideströmung und Salzgehalt. BAW (2008, S. 9) stellt dazu fest: „Konkrete Ergebniswerte für ausbaubedingte Änderungen werden dabei im Text nur be-
"nannt, wenn sie einen sinnvollen, messtechnisch auch zu erfassenden Schwellenwert überschreiten."

Die Schwellenwerte mit 1 cm Veränderung bei Tidewasserständen, 2,5 cm/s bei Tideströmungsge-

schwindigkeiten und 0,2 PSU bei Salzgehaltskonzentrationen sind sehr niedrig angesetzt. Entspr

chende Veränderungen sind in der Natur nicht der direkten Beobachtung zugänglich.

Im Ergebnis der Analyse wurden ausschließlich für den Parameter Tideströmung lokal im unmittelba

ren Bereich des Vorhabens messtechnisch zu erfassende (bei BAW auch: „ablesbare“) bzw. in der

hier verwendeten Diktion „mess- und beobachtbare“ vorhabensbedingte Veränderungen prognosti

ziert.

Für alle weiteren Parameter werden die Veränderungen unterhalb der Schwellenwerte erwartet (vgl.

Angaben zur Wirkreichweite in Tabelle 6.1-2). Insgesamt kommt die BAW (2008, S. 23) zum Schluss,

dass die vorhabensbedingt zu er wartenden Änderungen der Tidedynamik „gemessen an der natürli

cchen Variabilität sehr gering“ sind. Somit können auch die durch eine vorhabensbedingt sehr gering

veränderte Tidedynamik induzierten Wirkungen auf die QK gem. WRRL nur sehr gering sein.

6.1.3 Charakterisierende Übersicht identifizierter Oberflächenwasserkörper

Der Wirkbereich des Vorhabens (teils nicht mehr mess- und beobachtbare Veränderungen beinhal-
tend) erstreckt sich von Elbe-km 610 bis 745. Dementsprechend werden in diesem Fachbeitrag fol-
gende OWK des Koordinierungsraums Tideelbe bearbeitet: Außenelbe-Nord (OWK der Küstenge-

wässer), Elbe-Übergangsgewässer15, Elbe-West, Elbe-Ost und im Fokus der Untersuchung stehend

der OWK Hafen, in dem das Vorhaben liegt (Tabelle 6.1-3 und Abbildung 6.1-2).

15 Gem. WRRL Artikel 2, Nr. 6 wird ein „Übergangsgewässer“ wie folgt definiert: „die Oberflächenwasserkörper in der Nähe von

Flussmündungen, die aufgrund ihrer Nähe zu den Küstengewässern einen gewissen Salzgehalt aufweisen, aber im wesent-

lichen von Süßwasserströmungen beeinflusst werden“.
Tabelle 6.1-3: Längseinteilung der Tideelbe in fünf Oberflächenwasserläufe (nach ARGE Elbe 2004)

<table>
<thead>
<tr>
<th>Lage</th>
<th>Abschnittskilometrierung</th>
<th>Abschnittslänge (ca. km)</th>
<th>Oberflächenwasser (Name)</th>
<th>Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab. ca. Autobahnbrücke (Wilhelmshurg Süd) bzw. Norderelbe: ca. Autobahnbrücke (Billwerder Insel bis Wehr Geesthacht)</td>
<td>585,9-615,7 (NE) bzw. 614,6 (SE)</td>
<td>29,1</td>
<td>Elbe-Ost</td>
<td>nach ARGE ELBE 2004 nach OGewV</td>
</tr>
<tr>
<td>Ab ca. Estemündung bis Süderelbe: ca. Autobahnbrücke (Wilhelmshurg Süd) bzw. Norderelbe: ca. Autobahnbrücke (Billwerder Insel)</td>
<td>615,7 (NE) bzw. 614,6 (SE)-634,0</td>
<td>20,0</td>
<td>Hafen</td>
<td>1.1 Flüsse</td>
</tr>
<tr>
<td>Ab ca. Schwingemündung bis ca. Estemündung</td>
<td>634,0-654,9</td>
<td>19,9</td>
<td>Elbe-West</td>
<td></td>
</tr>
<tr>
<td>Ab Verbindungslinie zwischen Cuxhaven Kugelbake – Friedrichskoogspitze bis ca. Schwingemündung</td>
<td>654,9-727,7</td>
<td>72,8</td>
<td>Übergangsgewässer</td>
<td>1.3 Übergangsgewässer</td>
</tr>
<tr>
<td>Ab Verbindungslinie zwischen Cuxhaven Kugelbake – Friedrichskoogspitze Richtung Nordsee (ab km 727,7). Im vorliegenden Fachbeitrag ist nur der OWK-Typ „Polyhalines offenes Küstengewässer“ der Elbe (Typ N3) zu betrachten.</td>
<td>ab 727,7 (vgl. Abbildung 6.1-2)</td>
<td>-</td>
<td>Außenelbe-Nord (OWK der Küstengewässer) (1)</td>
<td>1.4 Küstengewässer</td>
</tr>
</tbody>
</table>

Erläuterungen:

Die tidebeeinflusste Unterelbe ist als sandgeprägter Strom (Typ 20), Marschengewässer (Typ 22.3) und als Übergangsgewässer (Typ T1) eingestuft.

Oberflächenwasserläufe der Kategorie „Flüsse“
Im limnischen OWK „Elbe-Ost“ (km 585,9-615,7 (NE) bzw. 614,6 (SE)) findet eine Überlagerung von Oberwasserzufluss und Gezeitenbewegung statt, deren Verhältnis die Strömungsgeschwindigkeiten bestimmt. Im unteren Abschnitt dieses OWK teilt sich der Elblauf in Norder- und Süderelbe.

Der ebenfalls limnische OWK „Hafen“ (km 615,7 (NE) bzw. 614,6 (SE)-634,0) ist durch große Verweilzeiten und eine geringe spezifische Oberfläche (geringe Wasseroberfläche bei großem Wasservolumen) geprägt. Diesen Wasserläufe kennzeichnet die besonders starke anthropogene Überformung durch den Hamburger Hafen.

Im limnischen OWK „Elbe-West“ (km 634,0-654,9) sind Wasserstände und Strömungen vor allem durch das Tidegeschehen geprägt. Die Verweilzeiten sind abhängig vom Oberwasserzufluss, die spezifische Oberfläche ist gering.

Oberflächenwasserläufe der Kategorie „Übergangsgewässer“

Benannte Oberflächenwasserkörper sind in Abbildung 6.1-1 dargestellt.

Oberflächenwasserkörper der Kategorie „Küstengewässer“

Das Elbe-Küstengewässer erstreckt sich in West-Ost-Richtung von der Hoheitsgrenze (12-Seemeilen-Grenze) um Helgoland bis zur Seegrenze des Übergangsgewässers Tideelbe. Im Küstengewässer hat die Elbe eine weite Trichtermündung mit ausgedehnten Sanden und Watten gebildet, in welche die Hauptstromrinne mit mehreren Nebenrinnen eingelagert ist. Es herrschen marine Bedingungen vor (polyhalin).

![Küstengewässertypen](image)

Abbildung 6.1-2: Vom Vorhaben betroffener Oberflächenwasserkörper des Küstengewässers (Wasserkörper-Nr. N3.5000.04.01)

Erläuterung:

- Quelle: LANU (2005), Beschriftung angepasst und ergänzt durch IBL Umweltplanung.
- HH = Hamburg, SH = Schleswig-Holstein, NI = Niedersachsen (die roten Linien zeigen die Bundeslandgrenzen auf)

In Tabelle 6.1-4 sind Informationen zu den vom Vorhaben betroffenen Oberflächenwasserkörpern aufgeführt.
Tabelle 6.1-4: Eigenschaften und Einstufungen der vom Vorhaben betroffenen Oberflächenwasserkörper (ohne Nebengewässer)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Elbe-Ost</th>
<th>Hafen</th>
<th>Elbe-West</th>
<th>Elbe-Übergangsgewässer</th>
<th>OWK Außenelbe-Nord (Typ N3, Polyhalines offenes Küstengewässer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU-Code</td>
<td>DE_RW_DE_HH_el_01</td>
<td>DE_RW_DEHH_el_02</td>
<td>DE_RW_DESH_el_03</td>
<td>DE_TW_DESH_T1.5000.01</td>
<td>DE_CW_N3.5000.04.01</td>
</tr>
<tr>
<td>Wasserkörper-Nr.</td>
<td>33001</td>
<td>33002</td>
<td>33003</td>
<td>T1.5000.01</td>
<td>N3.5000.04.01</td>
</tr>
<tr>
<td>Elbe-km</td>
<td>585,9–km 615,7 (NE) bzw. 614,6 (SE)</td>
<td>km 615,7 (NE) bzw. 614,6 (SE)-634,0</td>
<td>634,0–654,9</td>
<td>654,9–727,7</td>
<td>ab 727,7 (vgl. Abbildung 6.1-2)</td>
</tr>
<tr>
<td>Oberflächenwassertyp</td>
<td>Typ 20/ Sandgeprägte Ströme</td>
<td>Typ 20/ Sandgeprägte Ströme</td>
<td>Typ 22.3 Strom der Marschen</td>
<td>Übergangsgewässer Typ T1</td>
<td>Küstengewässer Typ N3 (polyhalin, exponiert)</td>
</tr>
<tr>
<td>Salinität</td>
<td>limnisch < 0,3‰</td>
<td>oligohalin bis polyhalin (0,3 bis 22‰)</td>
<td>< 29‰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausweisung als HMWB oder NWB</td>
<td>HMWB</td>
<td>HMWB</td>
<td>NWB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausnahmen und Fristveränderungen</td>
<td>Ja, Fristverlängerung bis 2027</td>
<td>Ja, Fristverlängerung bis 2027</td>
<td>Ja, Fristverlängerung bis 2027</td>
<td>Ja, Fristverlängerung bis 2027</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen:
- HMWB = durch physikalische Veränderungen des Menschen in seinem Wesen erheblich veränderter Oberflächenwasserkörper (Heavily Modified Waterbody)
- NWB = natürlicher Oberflächenwasserkörper (Natural Waterbody)
- ÖZK = Ökologische Zustandsklasse; ÖPK = Ökologische Potenzialklasse; CZK = Chemische Zustandsklasse
- ÖPK-Klassen: gut und besser, mäßig, unbefriedigend, schlecht
- ÖZK-Klassen (nur Küstengewässer): sehr gut, gut, mäßig, unbefriedigend, schlecht

Quelle:
FGG Elbe (2014a)

Bewertung des ökologischen Zustands/des Potenzials

<table>
<thead>
<tr>
<th>OWK</th>
<th>Außenelebe-Nord (DE_CW N3.5000.04.01)</th>
<th>ELBE (Übergangsgewässer) DESH_T1.5000.01</th>
<th>ELBE West DESH _el-03</th>
<th>Hafen DEHH _el-02</th>
<th>ELBE Ost DEHH _el-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtbewertung des ökol. Zustands bzw. Potenzials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrophyten/ Ml. Plankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyto- und Benthos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthische wirbellose Fauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischfauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spezifische Schadstoffe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>km</td>
<td>727.7</td>
<td>664.9</td>
<td>634.0</td>
<td>615.7 (NE)</td>
<td>614.6 (SE)</td>
</tr>
</tbody>
</table>

Legende
- sehr gut
- gut
- mäßig
- unbefriedigend
- schlecht
- nicht klassifiziert

Erläuterung: Bewertungsergebnisse nach FGG Elbe (2014a)

Bewertung des chemischen Zustands

<table>
<thead>
<tr>
<th>OWK</th>
<th>Außenelebe-Nord (DE_CW N3.5000.04.01)</th>
<th>ELBE (Übergangsgewässer) DESH T1.5000.01</th>
<th>ELBE West DESH _el-03</th>
<th>Hafen DEHH _el-02</th>
<th>ELBE Ost DEHH _el-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtbewertung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>km</td>
<td>727.7</td>
<td>664.9</td>
<td>634.0</td>
<td>615.7 (NE)</td>
<td>614.6 (SE)</td>
</tr>
</tbody>
</table>

Legende
- gut
- nicht gut

Nebenflüsse

In der folgenden Tabelle 6.1-5 sind der jeweilige Gewässertyp, der Status der Einstufung als natürliches, erheblich verändertes oder künstliches Gewässer sowie die Einstufung des ökologischen Potenzials bzw. ökologischen Zustands und des chemischen Zustands des OWK angegeben (zu den Begriffen siehe auch Erläuterungen zur Tabelle 6.1-4).

<table>
<thead>
<tr>
<th>Name des Oberflächenwasser-körpers</th>
<th>WK-ID</th>
<th>Bearbeitungsgebiet</th>
<th>Typ</th>
<th>Status</th>
<th>ÖKP/ÖZK</th>
<th>Chem. Zust.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündung in den Oberflächenwasserkörper Elbe-Ost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeve Unterlauf</td>
<td>DE_RW_DENI_28068</td>
<td>29 Este/Seeve (NDS)</td>
<td>22.2</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Ilmenau (Uelzen - Lüneburg)</td>
<td>DE_RW_DENI_28061</td>
<td>28 Ilmenau (NDS)</td>
<td>22.2</td>
<td>NWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Luhe (Unterlauf)</td>
<td>DE_RW_DENI_28016</td>
<td>29 Este/Seeve (NDS)</td>
<td>15</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Mündung in den Oberflächenwasserkörper Hafen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flottbek</td>
<td>el_4</td>
<td>Tideelbestrom</td>
<td>16</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Mündung in den Oberflächenwasserkörper Elbe-West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Este (Mündungsbereich mit Werft)</td>
<td>DE_RW_DEHH_es_01</td>
<td>29 Este/Seeve (NDS)</td>
<td>22.2</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>NW Wedeler Au (re)</td>
<td>pi_15</td>
<td>Pinnau (SH)</td>
<td>14</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Lühe-Aue Unterlauf</td>
<td>DE_RW_DENI_29033</td>
<td>29 Este/Seeve (NDS)</td>
<td>22.2</td>
<td>HMWB</td>
<td>4</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Mündung in den Oberflächenwasserkörper Elbe-Übergangsgewässer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwinge Unterlauf</td>
<td>DE_RW_DENI_29042</td>
<td>29 Este/Seeve (NDS)</td>
<td>22.1</td>
<td>HMWB</td>
<td>4</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Pinnau</td>
<td>DE_RS_DE5974_911</td>
<td>Pinnau (SH)</td>
<td>22.2</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Bützflether Süderelbe</td>
<td>DE_RW_DENI_29053</td>
<td>31 Untere Elbe (NDS)</td>
<td>22.1</td>
<td>HMWB</td>
<td>4</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Krückau</td>
<td>DE_RS_DE59752_823</td>
<td>7 Krückau-Alster-Bille (SH)</td>
<td>22.2</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Ruthenstrom</td>
<td>DE_RW_DENI_29054</td>
<td>31 Untere Elbe (NDS)</td>
<td>22.1</td>
<td>HMWB</td>
<td>4</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Wischhafener Süderelbe</td>
<td>DE_RW_DENI_29055</td>
<td>31 Untere Elbe (NDS)</td>
<td>22.1</td>
<td>NWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Stör Unterlauf</td>
<td>DE_PE_5000_01</td>
<td>5 Stör (SH)</td>
<td>22.2</td>
<td>HMWB</td>
<td>3</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Freiburger Schleusenfleth Unterlauf (tidebeeinflusst)</td>
<td>DE_RW_DENI_29058</td>
<td>31 Untere Elbe (NDS)</td>
<td>22.1</td>
<td>HMWB</td>
<td>4</td>
<td>nicht gut</td>
</tr>
<tr>
<td>Oste (Obersdorf bis Mündung)</td>
<td>DE_RW_DENI_30004</td>
<td>30 Oste (NDS)</td>
<td>22.2</td>
<td>HMWB</td>
<td>4</td>
<td>nicht gut</td>
</tr>
</tbody>
</table>

Erläuterung: Spalte „Status“: NWB = natural waterbody; HMWB = heavily modified waterbody; AWB = artificial water body.
Zustands- und Potenzialbewertung auf Ebene des Bewirtschaftungsplans für den Bewirtschaftungszeitraum 2016-2021 (FGG Elbe 2014a)

Hinweise zur Vergleichbarkeit des Bewirtschaftungsplans (FGG Elbe 2009) und der vorliegenden Aktualisierung (FGG Elbe 2014a)

6.2 Oberflächenwasserkörper Hafen (DE_RW_DEHH_el_02)

6.2.1 Übersicht zum OWK Hafen

Räumliche Abgrenzung
Der OWK Hafen erstreckt sich über eine Länge von ca. 19,0 km von km 615,7 (NE) bzw. 614,6 (SE) bis 634,0 (bis Mühlenberger Loch). Der limnische Oberflächenwasserkörper „Hafen“ ist durch lange Verweilzeiten und eine kleine spezifische Oberfläche (geringe Wasseroberfläche bei großem Wasservolumen) geprägt. Diesen Oberflächenwasserkörper kennzeichnet die starke anthropogene Überformung durch den Hamburger Hafen. Abbildung 6.2-1 zeigt die räumliche Abgrenzung des OWK Hafen. Der OWK ist als HMWB eingestuft.\(^{16}\)

Abbildung 6.2-1: OWK Hafen (DE_RW_DEHH_el_02, räumliche Abgrenzung)
Quelle: BSU (2005, dort Karte 1.2-1)

Beschreibung des Oberflächenwasserkörpers gemäß WRRL Anhang II Nr. 1.2.1 (System B)
Tabelle 6.2-1 zeigt die zur Beschreibung heranzuziehenden obligatorischen und optionalen Faktoren gem. WRRL Anhang II Nr. 1.2.1 (System B).

Tabelle 6.2-1: Beschreibung des Oberflächenwasserkörpers Hafen

<table>
<thead>
<tr>
<th>Obligatorische Faktoren</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>< 200 m (Tiefland)</td>
</tr>
<tr>
<td>Geologie</td>
<td>künstliche Auffüllung über Marschenablagerrungen</td>
</tr>
<tr>
<td>Größe</td>
<td>sehr großes Einzugsgebiet (> 135.000 km²)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optionale Faktoren</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Form und Gestalt des Hauptflussbettes</td>
<td>schwach gewunden, verzweigt</td>
</tr>
<tr>
<td>Durchschnittliche Zusammensetzung des Substrates</td>
<td>ca. 30% Sand (< 200 µ), ca. 45% Silt (< 63 µ), ca. 25% Ton (< 20 µ)</td>
</tr>
<tr>
<td>Fließgewässerlandschaft</td>
<td>Marsch, Aue, im Norden Grundmoräne</td>
</tr>
</tbody>
</table>

Quelle: BSU (2005)

Übersicht zur Bewertung der nach OGewV für den OWK Hafen relevanten QK

Tabelle 6.2-2 und Tabelle 6.2-3 zeigen die Bewertungsergebnisse der nach OGewV im OWK Hafen (Kategorie Fluss) relevanten biologischen und sonstigen Qualitätskomponenten.

<table>
<thead>
<tr>
<th>Biologische Qualitätskomponenten</th>
<th>Potenzialbewertung nach BWP 2016-2021 (FFG Elbe 2014a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewässerflora</td>
<td></td>
</tr>
<tr>
<td>Phytoplankton: Artenzusammensetzung, Biomasse</td>
<td>mäßig</td>
</tr>
<tr>
<td>Makrophyten/Phytobenthos: Artenzusammensetzung, Artenhäufigkeit</td>
<td>mäßig</td>
</tr>
<tr>
<td>Benthische wirbellose Fauna</td>
<td></td>
</tr>
<tr>
<td>Artenzusammensetzung, Artenhäufigkeit</td>
<td>mäßig</td>
</tr>
<tr>
<td>Fischfauna</td>
<td></td>
</tr>
<tr>
<td>Artenzusammensetzung, Artenhäufigkeit</td>
<td>mäßig</td>
</tr>
<tr>
<td>Altersstruktur</td>
<td></td>
</tr>
</tbody>
</table>

Chemischer Zustand und chemische Qualitätskomponenten

<table>
<thead>
<tr>
<th>Chemischer Zustand</th>
<th>Verschmutzung durch alle prioritären Stoffe, bei denen festgestellt wurde, dass sie in den Wasserkörper eingeleitet wurden</th>
<th>nicht gut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flussgebietsspezifische Schadstoffe</td>
<td>Verschmutzung durch sonstige Stoffe, bei denen festgestellt wurde, dass sie in signifikanten Mengen in den Wasserkörper eingeleitet wurden.</td>
<td>UQN nicht eingehalten</td>
</tr>
</tbody>
</table>
Tabelle 6.2-3: Ergänzende und hilfsweise Einstufung der hydromorphologischen und allgemeinen physikalisch-chemischen Qualitätskomponenten in Unterstützung der biologischen Qualitätskomponenten

<table>
<thead>
<tr>
<th>Hydromorphologische Qualitätskomponenten in Unterstützung der biologischen Komponenten</th>
<th>Ergänzende und hilfsweise Bewertung (Quellen und Methoden, s. Kap. 6.2.2.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserhaushalt</td>
<td>Abfluss und Abflussdynamik</td>
</tr>
<tr>
<td></td>
<td>Verbindung zu Grundwasserkörpern</td>
</tr>
<tr>
<td>Durchgängigkeit des Flusses</td>
<td>schlechter als gut</td>
</tr>
<tr>
<td>Morphologie</td>
<td>Tiefen- und Breitenvariation</td>
</tr>
<tr>
<td></td>
<td>Struktur und Substrat des Bodens</td>
</tr>
<tr>
<td></td>
<td>Struktur der Uferzone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allgemeine physikalisch-chemische Qualitätskomponenten in Unterstützung der biologischen Komponenten</th>
<th>Ergänzende und hilfsweise Bewertung (Quellen und Methoden, s. Kap. 6.2.2.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine physikalisch-chemische Komponenten</td>
<td>Temperaturverhältnisse</td>
</tr>
<tr>
<td></td>
<td>Versauerungszustand</td>
</tr>
<tr>
<td></td>
<td>Sauerstoffhaushalt</td>
</tr>
<tr>
<td></td>
<td>Salzgehalt</td>
</tr>
<tr>
<td></td>
<td>Nährstoffverhältnisse</td>
</tr>
</tbody>
</table>

OWK der Nebenflüsse mit Mündung in den OWK Hafen

Als Nebenfluss mit Mündung in den OWK Hafen ist die Flottbek zu benennen. Tabelle 6.2-4 fasst Informationen zur Flottbek zusammen.

Tabelle 6.2-4: OWK Flottbek (Nebenfluss mit Mündung in den OWK Hafen)

<table>
<thead>
<tr>
<th>Name des OWK</th>
<th>WK-ID</th>
<th>Bearbeitungsgebiet</th>
<th>Typ</th>
<th>Status</th>
<th>ÖKP/ÖZK</th>
<th>Chem. Zust.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündung in den Oberflächenwasserkörper Hafen</td>
<td>Flottbek</td>
<td>el_4</td>
<td>Tideelbestrom</td>
<td>16</td>
<td>HMWB</td>
<td>3</td>
</tr>
</tbody>
</table>

Erläuterung: Spalte „Status”: HMWB = heavily modified waterbody, Spalte „Typ”: 16 = Kiesgeprägter Tieflandbach, ÖPK-Klassen: (3) mäßig
Quelle: FGG Elbe 2014a, Entwurf, Anhang_A_5-2 und Karte 4.3 (Chemischer Zustand)
6.2.2 Beschreibung und Bewertung des ökologischen Potenzials und des chemischen Zustands im OWK Hafen

6.2.2.1 Biologische Qualitätskomponenten gem. Anlage 3 Nr. 1 OGewV

6.2.2.1.1 Gewässerflora

6.2.2.1.1.1 QK Phytoplankton

Bewertungsverfahren

Bewertungsergebnis

Tabelle 6.2-5: Ökologische Potenzialklassen sowie Einstufung der QK Phytoplankton im OWK Hafen (DE_RW_DEHH_el_02)

<table>
<thead>
<tr>
<th>Ökologische Potenzialklasse und Einstufung nach BWP 2016-2021</th>
<th>gut und besser</th>
<th>mäßig</th>
<th>unbefriedigend</th>
<th>schlecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2.2.1.2 QK Makrophyten/Phytobenthos

Zur QK Makrophyten/Phytobenthos werden an der Tideelbe ausschließlich die Makrophyten betrachtet (schriftl. Mitt. FGG Elbe vom 07.09.2015).

Bewertungsverfahren

Bewertungskriterien sind:

- Artenzusammensetzung,
- Abundanz und
- Besiedlungsstrukturen (Ausdehnung, Zonierung und Vitalität der Makrophytenbestände).

Die Bewertungsergebnisse der insgesamt 15 Probestellen an der Tideelbe werden abschließend auf die Oberflächenwasserkörper als Beurteilungseinheit übertragen.

Bewertungsergebnis

Tabelle 6.2-6 zeigt die Einstufung der QK Phytoplankton im Bewirtschaftungsplan 2016-2021 (FGG Elbe 2014a).

<table>
<thead>
<tr>
<th>Ökologische Potenzialklassen und Einstufung der QK Makrophyten im OWK Hafen (DE_RW_DEHH_el_02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gut und besser</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

17 expert judgement = das Bewertungsergebnis wird auf Basis von Expertenwissen vergeben.

Bei der Bestimmung des aktuellen ökologischen Potenzials sind dann folgende Fälle zu unterscheiden:

Fall 1: Es sind nur wenige wirksame Einzelmaßnahmen (wie z. B. die Optimierung der Kläranlagen oder der Gewässerunterhaltung) bis 2015 durchführbar, die nur geringfügige Verbesserungen der biologischen Qualitätskomponenten bewirken. Das aktuelle Potenzial ist in dem Fall als mäßig zu beurteilen, weil geringfügige Wirkungen auch nur eine geringfügige Verbesserung um höchstens eine Bewertungsstufe bewirken können.

Fall 2: Wenn mehrere wirksame Maßnahmen durchführbar sind, die dazu führen, dass sich der Zustand einzelner biologischer Qualitätskomponenten voraussichtlich um eine Stufe oder mehr verbessern werden, wird das aktuelle ökologische Potenzial als unbefriedigend beurteilt, es sei denn der aktuelle Zustand des WK ist bereits als mäßig ermittelt worden. In dem Fall ist dann das Potenzial mit dem Zustand gleichzusetzen, denn das Potenzial kann nicht niedriger liegen als der Zustand.

Ein aktuell schlechtes ökologisches Potenzial ist grundsätzlich auszuschließen, weil ein Sprung vom schlechten zum guten ökologischen Potenzial um 3 Bewertungsstufen unrealistisch ist.

Das gute Potenzial wird nur dann erreicht, wenn alle zielführenden und wirkungsvollen Maßnahmen umgesetzt worden sind. Wenn nicht alle Maßnahmen umgesetzt werden konnten, wird maximal das mäßige ökologische Potenzial erreicht.“

6.2.2.1.2 Gewässerfauna

6.2.2.1.2.1 QK benthische wirbellose Fauna

Bewertungsverfahren

Im OWK Hafen wird zur Bewertung der Qualitätsskompontente das von Krieg (2005) entwickelte Ästuartypieverfahren (= AeTV) angewendet. Aufgrund der Dominanz von Polychaeta, Oligochaeta und Chironomiden wird nicht nur das Makrozoobenthos (> 1000 µm) sondern auch die mit 250 µm Maschenweite abgesiebte Fauna betrachtet (Meiofauna).

Kernparameter sind:

- Aestuar-Typie-Index (AeTI)
Grundelement des Indexes ist eine „offene Artenliste“ typspezifischer Arten, die die für ein Gezeiten-
gewässer ästuar- und potamontypischen Fließgewässerspezies umfasst. Die im Ästuar vorkommen-
den Arten werden nach ihrer Bindung an das System indiziert. Für jede Art wird eine Einstufung in
Form des sog. eco-Wertes vergeben. Dieser eco-Wert reicht von eins bis fünf, wobei der höchste Wert
der engsten Bindung an das Ästuar entspricht. Diese typspezifische Artenliste entspricht einer modell-
haften Referenz eines ästuarinen Bewertungsräumes.

- Mittlere Artenzahl (MAZ)
- Alpha-Diversität (ADF)

Zusätzlich zum Ästuar-Typie-Index werden die mittlere Artenzahl (MAZ) der untersuchten Stichpro-
ben/Stationen und die Alpha-Diversität (ADF) nach Fisher et al. (1943) berücksichtigt. Die Bedeutung
der drei Parameter AeTI, MAZ und ADF wird prozentual im Verhältnis von ca. 50:30:20 zueinander
bewertet (Krieg 2013, S. 27). Im Einzelfall kann vom rechnerischen Ergebnis abgewichen werden,
 wenn der AeTI-Index entweder nicht innerhalb seiner Gültigkeitsnormen liegt (max. zulässige Stand-
artabweichung, Mindestzahl von Indikatorarten, Abundanzverhältnis eingestufter Arten zu Gesamtar-
ten > 50%) oder dies nach Expertenurteil oder aufgrund nicht stimmiger Co-Parameter geboten ist.
(Krieg 2014, S. 9). Generell nimmt ab einer Zustandsklasse von 3 die Bindung der Arten ans Ästuar
ab, die Arten tolerieren einen weiteren Salzgehaltsbereich und die Bevorzugung von Strömung nimmt
ab, während Generalisten, Neozoen und die Vermehrungsrate zunehmen und stark gefährdete Arten
fehlen (Krieg 2005, S. 16, Tab. 4).

Mittlerweile ist eine Anpassung des AeTV an die Potenzialbewertung (AeTV+) erfolgt (BioConsult
2015). Neben entsprechend an die Potenzialbewertung angepassten Klassengrenzen für den AeTI
werden MAZ und ADF formal in die Berechnung eingebunden (BioConsult 2015, S. 56, BioConsult
2014b, S. 52-56). Im OWK Hafen basiert die Einstufung jedoch nicht auf einer Neuberechnung son-

Bewertungsergebnis

Tabelle 6.2-12 zeigt die Einstufung der QK benthische wirbellose Fauna im Bewirtschaftungsplan

| Ökologische Potenzialklassen sowie Einstufung der QK benthische wirbel-
lose Fauna im OWK Hafen (DE_RW_DEHH_el_02) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ökologische Potenzialklasse und Einstufung nach BWP 2016-2021</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

Die Bewertung im Bewirtschaftungsplan 2016-2021 basiert auf Krieg (2013) unter Anwendung des
Ästuartypieverfahrens auf Grundlage von im Jahr 2012 durchgeführten Bestandeserfassungen. Die
dauf aufbauende Potenzialbewertung im Bewirtschaftungsplan stützt sich auf den AeTV+
(BioConsult 2015), denn von Krieg (2013) wurde weiterhin der „Zustand“ bewertet, nicht das „Potenzi-
al“. Ausgehend von dem durch Krieg (2013) ermittelten AeTI von 2,79¹⁸ wurde im Bewirtschaftungs-

¹⁸ Die Zahl der nachgewiesenen Indikatorarten ist im Vergleich mit der Bewertung im Jahr 2007 deutlich auf 28 angestiegen.
Dabei weist die Verteilung der Indikatorarten über die belegten 5 eco-Klassen mit 25 Arten ein Maximum für Opportunisten,
Gewässerubiquisten und euryöke Arten auf (Klassen III bis V). Ästuar- und flusstypische Indikatoren (nur Klasse II) sind mit
3 Spezies unverändert defizitär. Diese weisen, bedingt durch Propappus volki, mit ca. 36% der festgestellten Individuen eine
gegenüber 2007 erhöhte relative Abundanz auf. Aufgrund der sandig-kiesigen Sohlstruktur dominierte jedoch mit fast 50%
Bestandsquote der holeuryöke Keulenpolyp Cordylophora caspia (Klasse IV).
plan 2016-2021 (FGG Elbe 2014a) die QK benthische wirbellose Fauna im OWK Hafen per „expert judgement“ in die Potenzialklasse „mäßig“ eingestuft.

Tabelle 6.2-8: Bewertung der QK benthische wirbellose Fauna im OWK Hafen nach FGG Elbe (auf Basis von Krieg 2013 und BioConsult 2015)

<table>
<thead>
<tr>
<th>Potenzialklassen¹</th>
<th>sehr gut</th>
<th>gut</th>
<th>mäßig</th>
<th>unbefriedigend</th>
<th>schlecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>AeTI [Indexwert]</td>
<td>1,0000 - 1,6000</td>
<td>1,6001 - 2,3000</td>
<td>2,3001 - 3,3000</td>
<td>3,4001 - 4,4000</td>
<td>4,4001 - 5,0000</td>
</tr>
</tbody>
</table>

Erläuterungen:
¹ Potenzialklassen nach BioConsult (2015)
² Im Entwurf zum Bewirtschaftungsplan wurde nach expert judgement mit „mäßig“ bewertet. Nach schriftlicher Mitteilung der FGG Elbe vom 07.09.2015 ist das Potenzial der QK benthische wirbellose Fauna „mäßig an der Grenze zu unbefriedigend“.

Der AeTI schwankt (Krieg 2013, S. 26) im Ergebnis der Untersuchungsjahre 2007, 2010 und 2012 beachtlich. Dies ist bedingt durch ebenso ständige wie beachtliche Fluktuationen der gemäß Anlage 3 der OGewV anzuwendenden Parameter „Artenzusammensetzung“ und „Artenhäufigkeit“. Die von Krieg im OWK Hafen ermittelte „mittlere Abundanz“ variiert bislang um dem Faktor 6 zwischen ca. 23.000 bis 150.000 Individuen/m², die mittlere Artenzahl immerhin um einen Faktor >2 zwischen 5,3 bis 12,8 Arten.

<table>
<thead>
<tr>
<th>Tideelbe</th>
<th>OWK Elbe Hafen</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Jahr</td>
<td>2005</td>
</tr>
<tr>
<td>Anzahl Stationen [n PE]</td>
<td>9</td>
</tr>
<tr>
<td>Eco-Artenzahl auf QS</td>
<td>24</td>
</tr>
<tr>
<td>Eco-MAZ [n/PE]</td>
<td>8,9</td>
</tr>
<tr>
<td>Ges. Abundanz [Ind. auf QS]</td>
<td>259.921</td>
</tr>
<tr>
<td>Mittl. Abundanz [Ind./m² & PE]</td>
<td>28.880</td>
</tr>
<tr>
<td>eudominante Art(-en)</td>
<td>Aeolosoma spp.</td>
</tr>
</tbody>
</table>
6.2.2.1.2.2 QK Fischfauna

Bewertungsverfahren

Die Bewertung des ökologischen Potenzials ergibt sich aus der Abweichung vom Referenzzustand (BioConsult 2014, S. 66 - 68).

Bewertungsergebnis

Tabelle 6.2-8 zeigt die Einstufung der QK Fischfauna im Bewirtschaftungsplan 2016-2021 (FGG Elbe 2014a).

Tabelle 6.2-9: Ökologische Potenzialklassen sowie Einstufung der QK Fischfauna im OWK Hafen (DE_RW_DEHH_el_02)

<table>
<thead>
<tr>
<th>Ökologische Potenzialklasse und Einstufung nach BWP 2016-2021</th>
<th>gut und besser</th>
<th>mäßig</th>
<th>unbefriedigend</th>
<th>schlecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die mittleren Individuenzahlen lagen insgesamt bei 8.130 Individuen/h/80m². Die Abundanz der Süßwassertaxa war im OWK Hafen am höchsten (BioConsult 2009, S. 44). Dominante Art war überall der Stint mit Anteilen von mindestens 80%, der Kaulbarsch war mit maximal 12% Anteil die zweithäufigste Art.
6.2.2.2 Qualitätskomponenten in Unterstützung der biologischen Komponenten

6.2.2.2.1 Hydromorphologische Qualitätskomponenten gem. Anlage 3 Nr. 2 OGewV (hilfsweise und ergänzende Bewertung)

6.2.2.2.1.1 QK Wasserhaushalt

Der Zustand des QK Wasserhaushalts ist gemäß Anlage 3 Nr. 2 OGewV im OWK Hafen anhand des Parameter Abfluss und Abflussdynamik sowie der Verbindung zu Grundwasserkörpern zu berücksichtigen (s. Tabelle 4.2-2). Vorhabensbedingte Veränderungen auf Grundwasserkörper werden in Kapitel 7 untersucht.

Abfluss und Abflussdynamik

Bewertungsverfahren

Nachfolgend wird ausschließlich orientierend an den umfassenden und in Teilen einzugsgebietsbezogenen und einzugsgebietsübergreifenden („Vorgehensweise Quelle zur Mündung“) Anforderungen der Verfahrensempfehlung eine hilfsweise abschätzende Bewertung vorgenommen. LAWA (2014b, S. 22) weist darauf hin, dass eine „….zunächst abschätzende Klassifizierung…“ möglich ist.

Bewertungsergebnis

Belastungsgruppe D: Gewässerausbau und Bauwerke im Gewässer und Belastungsgruppe E: Auenveränderungen: Nach LAWA (2014b) sind die Belastungsgruppen D und E anhand von u. a. morphologischen Parametern beschreibbar. Tabelle 6.2-11 fasst die Ergebnisse zur Qualitätskomponenten-
gruppe Morphologie (die ebenso zur Beschreibung der QK Wasserhaushalt herangezogen werden können) zusammen.

Tabelle 6.2-11: Bewertungsergebnisse der Qualitätskomponentengruppe Morphologie zu den Belastungsgruppen D und E

<table>
<thead>
<tr>
<th>Belastungsgruppe D: Gewässerausbau und Bauwerke im Gewässer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriterium D1: Hydraulische Wirkung des Gewässerausbau</td>
<td>Nach LAWA (2014b) sind Ergebnisse der Strukturgütekartierung als Bewertungsparameter heranzuziehen. Die detaillierten Ergebnisse der Zustandseinstufung der QK Morphologie (s. Tabelle 6.2-12) können herangezogen werden (dort: Parameter Breiten- und Tiefenvarianz)</td>
</tr>
<tr>
<td>Die weiteren Kriterien (D3, D4) sind speziell auf Staunanlagen ausgerichtet und demnach hier nicht relevant.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belastungsgruppe E: Auenveränderungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriterium E1: Flächenverlust an natürlichem Auenraum</td>
<td>Die detaillierten Ergebnisse der Zustandseinstufung der QK Morphologie (s. Tabelle 6.2-12) können herangezogen werden (dort: Parameter Verhältnis rezente Aue - morphologische Aue):</td>
</tr>
<tr>
<td>Beschreibung nach LAWA (2014b): „Flächenverlust an natürlichem Auenraum: Verhältnis rezenter (derzeit funktionsstüchtiger) zu morphologischer ursprünglich funktionsstüchtiger Aue“</td>
<td>OWK Hafen: schlecht (stark verbaut/Hafenbereich)</td>
</tr>
<tr>
<td>Kriterium E2: Ausuferungsvermögen der Auen-gewässer</td>
<td>Die detaillierten Ergebnisse der Zustandseinstufung der QK Morphologie (s. Tabelle 6.2-12) können herangezogen werden (dort: Parameter Breiten- und Tiefenvarianz, hierzu s. Ergebnis zu Kriterium D1 und ergänzend Parameter Uferstruktur):</td>
</tr>
<tr>
<td>Beschreibung nach LAWA (2014b): „Ausuferungsvermögen des Auenfließgewässers ermittelt aus anthropogen veränderter Einschnitttiefe und verändertem Profiltyp“</td>
<td>OWK Hafen: schlecht (Ufer der Norder- und Süderelbe fast vollständig mit Deckwerken oder senkrechten Uferverbauungen (Spundwände, Mauern) versehen)</td>
</tr>
<tr>
<td>Kriterium E3: Alternative Kenngrößen zum Verlust von wasserhaushaltsbezogenen Auenfunktionen</td>
<td>Die detaillierten Ergebnisse der Zustandseinstufung der QK Morphologie (s. Tabelle 6.2-12) können herangezogen werden (s. hierzu Ergebnis zu Kriterium E1 und E2)</td>
</tr>
<tr>
<td>Beschreibung nach LAWA (2014b): „Alternative Kenngrößen zur Beschreibung des Verlustes von wasserhaushaltsbezogenen Auenfunktionen (z. B. Auenretentionsverlust, Laufentwicklung/Laufverkürzung)“</td>
<td></td>
</tr>
<tr>
<td>Hinweis: Es werden nach LAWA (2014b) keine weiteren Kriterien zu dieser Belastungsgruppe benannt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belastungsgruppe F: Sonstige Belastungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonstige und über die oben benannten Belastungsgruppen hinausgehenden Belastungen werden nicht be-nannt.</td>
<td></td>
</tr>
</tbody>
</table>

Sowohl das Abflussverhalten als auch die Dynamik werden, bezogen auf den Oberwasserzufluss durch die in Tabelle 6.2-11 benannten anthropogenen Überprägungen, beeinflusst. Es ist die Frage zu beantworten, wie intensiv die benannten Belastungen das natürliche Abflussverhalten und die Dynamik beeinträchtigen. Zu berücksichtigen ist, dass die Elbe zum sogenannten Regen-Schnee-Typ ge-

6.2.2.2.1.2 QK Durchgängigkeit des Flusses
Der Zustand der QK Durchgängigkeit des Flusses ist gemäß Anlage 3 Nr. 2 OGewV im OWK Hafen zu berücksichtigen (s. Tabelle 4.2-2).

Bewertungsverfahren

Bewertungsergebnis

Eine „...besondere Form der eingeschränkten Durchgängigkeit ergibt sich im Bereich der Tideelbe bei Hamburg durch die Kombination von anthropogen verursachten hydromorphologischen Veränderungen und der nachfolgend näher beschriebenen signifikanten stofflichen Belastung (Nährstoffe). Hierdurch kommt es in warmen Jahreszeiten zu ausgeprägten Sauerstoffdefiziten, die insbesondere für Langdistanzwanderer (Fische und Rundmäuler) eine ökologische Barriere darstellen (vgl. Kap. 2.1.5).“ (FGG Elbe 2009, S. 107). Sauerstoffdefizite treten regelmäßig ab Beginn der Vegetationsperiode auf.

Die Sedimentdurchgängigkeit wird maßgeblich durch Querbauwerke beeinflusst (FGG Elbe 2013, S. 16): „Aus deren Barrierewirkung für den Sedimenttransport resultieren stromaufwärts Rückstau mit Sedimentakkumulation und stromabwärts Erosion der Gewässersohle. In der weiteren Folge treten modifizierte Sohlsubstratzusammensetzungen und veränderte Strukturverhältnisse sowohl ober- wie auch unterhalb eines Querbauwerkes auf.“ Das Sedimentmanagementkonzept (FGG Elbe 2013) unterscheidet und bewertet sechs Funktionsräume (FR) in der Tideelbe, wobei der Funktionsraum 2 unge-
fähr dem OWK Hafen entspricht. In Folge des Wehrs Geesthacht, wird die Sedimentdurchgängigkeit des OWK Hafen als „unbefriedigend“ bewertet.

6.2.2.2.1.3 QK Morphologie

Der Zustand der QK Morphologie ist gemäß Anlage 3 Nr. 2 der OGV im OWK Hafen anhand der Parameter Tiefen- und Breitenvariation des Gewässers, Struktur und Substrat des Bodens und Struktur der Uferzone zu berücksichtigen (vgl. Tabelle 4.2-2).

Bewertungsverfahren

Bewertungsergebnis

Tabelle 6.2-12: Bewertung der Parameter der Qualitätskomponentengruppe Morphologie (nach FGG Elbe 2013)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hafen (FR 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breitenvarianz/Tiefenvarianz</td>
<td>schlecht Fahrrinne künstlich, Ausbau des Hamburger Stromspaltungsgebiets zu einem Hafen, Kanalisierung des Stroms</td>
</tr>
<tr>
<td>Korngrößenverteilung des Sohlsubstrates</td>
<td>unbefriedigend stark überprägt, Einflüsse von Kanalisierung, Schlicksedimentation, Rinnenvertiefungen</td>
</tr>
<tr>
<td>Uferstruktur</td>
<td>schlecht Ufer der Norder- und Süderelbe fast vollständig mit Deckwerken oder senkrechten Uferverbauungen (Spundwände, Mauern) versehen</td>
</tr>
<tr>
<td>Verhältnis rezente Aue-morphologische Aue</td>
<td>schlecht stark verbaut/ Hafenbereich</td>
</tr>
</tbody>
</table>

Erläuterung: Gekürzte Wiedergabe durch IBL Umweltplanung GmbH; FR = Funktionsraum

Ergänzungen aus den vorliegenden Antragsunterlagen zum direkten Vorhabensbereich: Im OWK Hafen beträgt der Abstand der Fahrrinne von der derzeitigen Uferlinie (Bubendey-Ufer) ca. 75 m. An der Fahrrinnenbegrenzung in der Elbe liegt die derzeitige Solltiefe bei NN -16,7 m. Der vorhandene Petroleumhafen ist ca. 960 m lang und ca. 145 m breit. Die Solltiefe der Hafensohle im Petroleumhafen liegt im Zentralbereich bei NN -11,0 m. Im Bereich des Anlegers der Firma DUPEG (nördliche Seite) befindet sich eine Liegewanne von ca. 220 m x 50 m mit einer Solltiefe von NN -13,0 m (IBL Umweltplanung 2009, Antragsunterlage B.1).

Angaben zu Sedimenten liegen durch neun Bohrun gen vor (BWS GmbH 2009, Antragsunterlage B.2.3). Die erkundeten Schlickmächtigkeiten im Petroleumhafen betragen 0,75 m bis 2,5 m. Im Mittel wurden Mächtigkeiten von ca. 1,5 m festgestellt. Unterhalb des Schlicks stehen grobsandige Mittel- und Feinsande an, die im oberen Bereich zum Teil schluffig bzw. von Schluffbändern durchsetzt sind.

6.2.2.2.1.4 Ergänzende Darstellung der QKTideregime

Tabelle 6.2-13: Übersicht über ausgewählte hydrologische Kenngrößen (Elbe-km 625, 628 und 630)

<table>
<thead>
<tr>
<th>Tidewasserstände</th>
<th>Elbe-km 625</th>
<th>Elbe-km 628</th>
<th>Elbe-km 630</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittleres Tidethochwasser (MThw)</td>
<td>ca. NN +2,00 m</td>
<td>ca. NN +2,00 m</td>
<td>ca. NN +1,90 m</td>
</tr>
<tr>
<td>Mittleres Tideniedrigwasser (MTrnw)</td>
<td>ca. NN -1,75 m</td>
<td>ca. NN -1,70 m</td>
<td>ca. NN -1,65 m</td>
</tr>
<tr>
<td>Mittlerer Tidenhub</td>
<td>ca. +3,80 m</td>
<td>ca. +3,80 m</td>
<td>ca. +3,70 m</td>
</tr>
<tr>
<td>Tidestromung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittlere Ebstromgeschwindigkeit</td>
<td>ca. 0,42 m/s</td>
<td>ca. 0,75 m/s</td>
<td>ca. 0,75 m/s</td>
</tr>
<tr>
<td>Mittlere Flusstromgeschwindigkeit</td>
<td>ca. 0,41 m/s</td>
<td>ca. 0,85 m/s</td>
<td>ca. 0,75 m/s</td>
</tr>
</tbody>
</table>

Quelle: BAW (2008)

Erläuterung: Angegeben sind die Kennwerte für den planerischen Ist-Zustand.

Die Strömungsverhältnisse der Tideelbe mit ihren Nebengewässern sind sehr komplex und weisen hohe natürliche Schwankungen auf. Grundsätzlich treten die höchsten Strömungsgeschwindigkeiten in der tiefen Hauptrinne der Elbe auf.

6.2.2.2 Chemische Qualitätskomponenten gem. Anlage 3 Nr. 3.1 OGewV
Chemische Qualitätskomponenten werden gem. Anlage 3 Nr. 3.1 OGewV in allen OWK-Kategorien bewertet. Flussgebietsspezifische Schadstoffe gem. Anlage 5 OGewV werden unterstützend zur Bewertung des ökologischen Zustands (Potenzials) herangezogen.

6.2.2.2.1 QK Flussgebietsspezifische Schadstoffe

Bewertungsverfahren

Bewertungsergebnis
6.2.2.2.3 Allgemeine physikalisch-chemische Qualitätskomponenten gem. Anlage 3 Nr. 3.2 OGeWV (hilfsweise und ergänzende Bewertung)

QK Temperaturverhältnisse

Die Qualitätskomponente Temperaturverhältnisse ist gem. Anlage 3 Nr. 3.2 der OGeWV im OWK Hafen zu berücksichtigen.

Bewertungsverfahren

Bewertungsergebnis

Ordnet man diese Feststellung in die Anforderungen gemäß Anlage 6 OGeWV (dort Tabelle 1.1.2) ein, dann wäre hilfsweise und ergänzend der Zustand im OWK Hafen „sehr guten (< 25°C) bis „guten“ Bereich (< 28°C)“ Bereich zuzuordnen.

QK Sauerstoffhaushalt

Die Qualitätskomponente Sauerstoffhaushalt ist gem. Anlage 3 Nr. 3.2 OGeWV im OWK Hafen zu berücksichtigen. Nachfolgend wird zunächst eine übergeordnete Einführung insbesondere zum sog. „Sauerstofftal“ gegeben.

Fluchtiotope zur Verfügung, besteht die Gefahr von lokal ausgeprägtem Fischsterben". FGG Elbe weist darauf hin, dass „Im August wird im Bereich der Strom-km 630–650 der kritische Wert von 3 mg/l O₂ erreicht oder sogar unterschritten“ wird und formuliert „unterhalb der roten Linie „3 mg/l“ beginnt der Bereich, in dem mit einer erhöhten Gefahr für Fischsterben zu rechnen ist“.

FGG Elbe (2014a) greift die Problematik auf und weist einmal mehr auf die besondere Bedeutung der Durchgängigkeit im Zusammenhang mit dem Sauerstofftal hin. Wegen einer mangelnden Durchgängigkeit könne der Fluss „einen Teil seiner ökologischen Funktionen im Naturhaushalt verlieren.“ Deshalb sei „die Verbesserung der ökologischen Durchgängigkeit der Fließgewässer und die Wiederherstellung von angemessenen Lebensräumen für geeignete Laich- und Aufwuchshabitaten für Fische und Neunaugen wichtige Gesichtspunkte zur Erreichung der Bewirtschaftungsziele der WRRL im Flussgebiet der Elbe“.

Bewertungsverfahren

In Anlage 6 OGewV (dort Tabelle 1.1.1) sind Anforderungen an den Sauerstoffgehalt (in mg/l) und den Biochemischen Sauerstoffbedarf in 5 Tagen (BSB₅, ungehemmt) für den „sehr guten“ Zustand differenzierter nach Gewässertypen (nur Fließgewässer) aufgeführt. Für Marschengewässer – Typ 22 wird ein „Sauerstoffgehalt >7 mg/l Minimum“ als Anforderung an den sehr guten ökologischen Zustand und das höchste ökologische Potenzial genannt.

Generell werden sowohl 3 mg O₂/l als auch 4 mg O₂/l als fischkritischer Wert angegeben. Laut FGG Elbe (2014a, S. 43) ist bei Sauerstoffgehalten <3 mg O₂/l mit einem erhöhten Risiko für Fischsterben zu rechnen, sodass dieser Grenzwert laut Wärmelastplan im Übergangsgewässer nicht unterschritten werden sollte (Sonderaufgabenbereich Tideelbe 2008, S. 3).
Bewertungsergebnis

Hilfsweise und ergänzend ist der Zustand im OWK Hafen wie folgt einzustufen:

QK Salzgehalt

Die Qualitätskomponente Salzgehalt ist gem. Anlage 3 Nr. 3.2 OGewV im OWK Hafen zu berücksichtigen.
Bewertungsverfahren

Bewertungsergebnis

QK Versauerungszustand

Bewertungsverfahren

Bewertungsergebnis

QK Nährstoffverhältnisse
Die Qualitätskomponente Nährstoffverhältnisse ist gem. Anlage 3 Nr. 3.2 OGewV im OWK Hafen zu berücksichtigen.

Bewertungsverfahren

Bewertungsergebnis
FGG Elbe (2014a, S. 106) hält fest: „Das Erreichen des „guten“ ökologischen Zustands […] in den Wasserkörpern des Elbestroms ist hingegen ein gemeinsam zu bewältigendes Ziel, das trotz der in-

In FGG Elbe (2014a) wird keine Oberflächenwasserkörper bezogene Auswertung dargestellt. Es findet eine übergeordnete Bilanzierung der Nährstoffkonzentrationen und Reduzierungsanforderungen an der Messstelle Seemannshöft (Lage im OWK Hafen) am Übergang zwischen dem limnischen und marinen Bereich statt (FGG Elbe 2014d, S. 11 ff.). Hier ist langfristig eine positive Entwicklung zu beobachten. „Für den ersten Bewirtschaftungszeitraum wurde eine Minderung der Stickstofffrachten gegenüber dem Jahr 2006 von 6,6% prognostiziert. Diese Minderung wurde für das Jahr 2012 erreicht, ist aber zu einem großen Teil auf die hydrologische Variabilität zurückzuführen.“ […] „Im Unterschied zur Entwicklung bei Stickstoff ist die Verminderung der Phosphorfrachten an der Bezugsmessstelle Seemannshöft durch eine stetige, aber sich abschwächende Abnahme der Frachten in den letzten Jahren gekennzeichnet.“

Zielwerte (Jahresmittelwerte) von 2,8 mg/l (Gesamtstickstoff) und 0,1 mg/l (Gesamtphosphor) werden jedoch nicht erreicht bzw. unterschritten. An der Bilanzmessstelle Seemannshöft betrug die mittlere Konzentration von Gesamtstickstoff im Zeitraum von 2009–2012 3,4 mg/l. Die mittlere Konzentration von Gesamtphosphor betrug 0,16 mg/l (FGG Elbe 2014a, S. 107). Ordnet man diese Werte in die Anforderungen gemäß LAWA (2007 und 2014a) ein, dann wäre hilfsweise und ergänzend der Zustand des OWK Hafen als „mäßig“ einzustufen.

6.2.2.3 Chemischer Zustand gem. Anlage 7 OGewV

Der chemische Zustand wird über das Vorhandensein von prioritären und prioritär gefährlichen Stoffen gemäß Anlage 7 OGewV in allen OWK-Kategorien bewertet. Demnach auch im OWK Hafen. Die betreffenden Stoffe und Normen sind in der Richtlinie 2008/105/EG geregelt. Es handelt sich um Stoffe die als prioritär für Maßnahmen auf Gemeinschaftsebene angesehen und überwacht werden sollten (Präambel 2008/105/EG (9, 10)). Darunter befinden sich einige als prioritär gefährlich identifizierte Stoffe, bei denen die Einleitungen, Emissionen und Verluste dieser Stoffe zu beenden oder schrittweise einzustellen sind (Präambel 2008/105/EG (10)). Es besteht keine Redundanz zu den flussgebietsspezifischen Schadstoffen (Kap. 6.2.2.2.2, S. 50).

Bewertungsverfahren

Bewertungsergebnis

Tabelle 6.2-14: Chemische Zustandsklassen und Bewertung des chemischen Zustandes des OWK Hafen

<table>
<thead>
<tr>
<th>Zustandsklassen und Einstufung nach BWP 2016-2021</th>
<th>Zustandsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gut</td>
</tr>
<tr>
<td></td>
<td>nicht gut</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Ursächlich für Überschreitungen (nicht OWK differenziert) sind „...die Schadstoffe DDT (9b-1 und 9b-2), Hexachlorcyclohexan (18), Summe aus Benzo(g,h,i)-perylen und Indeno(1,2,3-cd)-pyren (Polycyclische aromatische Kohlenwasserstoffe, PAK genannt) (28-3) und TBT (30).“ (FGG Elbe 2009, S. 83). Ursächlich für Überschreitungen (nicht OWK differenziert) sind (FGG Elbe 2014a, S. 79-80, nicht OWK differenziert) sind Quecksilber in Biota und „...die, ebenfalls als ubiquitär eingeordneten Stoffe Bromierte Diphenylether (Nr. 5), PAK (Nr. 28) und Tributylzinn (Nr. 30) zu verzeichnen. Dies gilt auch für die polycyclischen aromatischen Verbindungen Anthracen (Nr. 2) und Fluoranthen (Nr. 15). Es muss davon ausgegangen werden, dass die UQN-Vorgaben in Biota für die Bromierte Diphenylether (Nr. 5), PAK (Nr. 28) flächendeckend überschritten werden. Auch für Fluoranthen (Nr. 15) in Biota wird es weitverbreitet Überschreitungen geben. […] Trotz Anwendung von Hintergrundkonzentrationen treten Überschreitungen für die Metalle Cadmium (Nr. 6) und Nickel (Nr. 23) auf."

Tabelle 6.2-15: Schadstoffe mit Überschreitungen der Umweltqualitätsnormen nach FGG Elbe (2014a, 2014g)

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>Umweltqualitätsnormen bezogen auf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracen (Nr. 2)</td>
<td>Wasser</td>
</tr>
<tr>
<td>Bromierte Diphenylether (Nr. 5)</td>
<td>Wasser</td>
</tr>
<tr>
<td>Fluoranthen (Nr. 15)</td>
<td>Wasser</td>
</tr>
<tr>
<td>Hexachlorbenzol (HCB, Nr. 16)</td>
<td>Biota</td>
</tr>
<tr>
<td>Quecksilber (Nr. 21)</td>
<td>Biota</td>
</tr>
<tr>
<td>Nickel (Nr. 23)</td>
<td>Wasser</td>
</tr>
<tr>
<td>PAK (Nr. 28)</td>
<td>Wasser</td>
</tr>
<tr>
<td>TBT (Nr. 30)</td>
<td>Wasser</td>
</tr>
</tbody>
</table>

Erläuterung: Die Nummern hinter den Stoffen beziehen sich auf die Durchnumerierung der Schadstoffe in Anlage 7 der OGewV. In FGG Elbe (2014a, g) wurde bereits die Änderungsrichtlinie 2013/39/EU berücksichtigt.

Tabelle 6.2-16 listet die Herkunftsbereiche und mögliche Eintrittspfade der Schadstoffe.
Tabelle 6.2-16: Herkunftsbereiche und Eintrittspfade der Schadstoffe (nur für Stoffe mit Überschreitungen der Umweltqualitätsnormen)

<table>
<thead>
<tr>
<th>Schadstoff (Nr. nach OGeV)</th>
<th>Herkunftsbereich (u. a. FGG Elbe 2014a, S. 109)</th>
<th>Eintrittspfade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracen (Nr. 2)</td>
<td>siehe PAK</td>
<td>siehe PAK</td>
</tr>
<tr>
<td>Bromierte Diphenylether (Nr. 5)</td>
<td>Diffuse Einträge</td>
<td>v. a. über die Luft, aber auch durch Abwasser¹</td>
</tr>
<tr>
<td>Fluoranthen (Nr. 15)</td>
<td>siehe PAK</td>
<td>siehe PAK</td>
</tr>
<tr>
<td>HCB (Nr. 16)</td>
<td>Tschechische Republik, Mulde, Saale</td>
<td>Altlasten und nicht rezente Einträge einschließlich Altsedimente</td>
</tr>
<tr>
<td>Quecksilber (Nr. 21)</td>
<td>Saale, Schwarze Elster, Tschechien, Mulde</td>
<td>v. a. Altlasten und nicht rezente Einträge einschließlich Altsedimente, geringer Beitrag über Abwasser, Erosion</td>
</tr>
<tr>
<td>Nickel (Nr. 23)</td>
<td>Mulde/Saale-Einzugsgebiet, Mittelelbe (als Zwischenspeicher)</td>
<td>Erosion, Abwasser (Stahlguss, Düngemittel, Papierindustrie, Urbanes Abwasser)²</td>
</tr>
<tr>
<td>PAK (Nr. 28)</td>
<td>Diffuse Einträge</td>
<td>v. a. über die Luft, bedeutend über Abwasser und Erosion, geringer Beitrag über Altlasten und nicht rezente Einträge (einschließlich Altsedimente)</td>
</tr>
<tr>
<td>TBT (Nr. 30)</td>
<td>Hamburg/Tideelbe</td>
<td>Altlasten (Schiffsanstriche) und nicht rezente Einträge einschließlich (Altsedimente)³</td>
</tr>
</tbody>
</table>

6.2.3 Prüfung möglicher vorhabensbedingter Verschlechterungen des ökologischen Potenzials und des chemischen Zustands

6.2.3.1 Vorhabensbedingt zu erwartende Veränderungen der unterstützend heranzuziehenden Qualitätskomponenten im OWK Hafen (DE_RW_DEHH_el_02)

6.2.3.1.1 Hydromorphologische Qualitätskomponenten

Wasserhaushalt

Parameter Abfluss und Abflussdynamik

Parameter Verbindung zu Grundwasserkörpern

Vorhabensbedingt kann theoretisch die „Verbindung zu Grundwasserkörpern“ verändert werden. Dies ist in allen OWK, in denen Baggerungen stattfinden, zu berücksichtigen und erfolgt in Kapitel 7 (ab S. 84 ff.).

Fazit

20 Der Parameter „Abfluss und Abflussdynamik“ im OWK Hafen wurde ergänzend und hilfsweise mit „mäßig“ bewertet (vgl. Kapitel 6.2.2.2.1.1 und Tabelle 6.2-3).
Durchgängigkeit des Flusses

Im OWK Hafen befinden sich keine Querbauwerke, die die Durchgängigkeit des Flusses unterbinden. Vorhabensbedingt wird sich daran nichts verändern, da eine Errichtung von Querbauwerken nicht Bestandteil des Vorhabens ist. Die Durchgängigkeit des Flusses wird durch die vorhabensbedingte Veränderung der Morphologie bzw. der Unterwassertopographie nicht verändert. Vorhabensbedingte Auswirkungen auf die Durchgängigkeit des OWK Hafen für Fische (insb. Wanderfische) sind allenfalls temporär und mittelbar (indirekt) durch unterschiedliche Bautätigkeiten und davon ausgehende Störwirkungen möglich. Diese werden bei der Prognose vorhabensbedingt möglicher nachteiliger Veränderungen der der biologischen QK Fischfauna berücksichtigt (s. Kapitel 6.2.3.2) berücksichtigt.

Fazit

Vorhabensbedingte Veränderungen, die die Durchgängigkeit des Flusses betreffen, werden bei der Prognose vorhabensbedingt möglicher nachteiliger Veränderungen der biologischen Qualitätskomponenten berücksichtigt.

Morphologie

Es sind vorhabensbedingte Veränderungen der Parameter der QK Morphologie durch die Maßnahmen des Ausbaus zu erwarten.

Parameter Tiefen- und Breitenvariation

Die Tiefenvariation im OWK Hafen wird insbesondere durch die Errichtung einer Kaimanlage, die Herstellung von Liegeplätzen entlang der neuen Kaimauer (Soll-Tiefe zwischen -17,1 m und -20,8 m), die Aufweitung des bestehenden Drehkreises in der Elbe von 480 m auf 600 m, die Vertiefung im Erweiterungsbereich auf die zukünftige Soll-Tiefe der Fahrrinne von NN -17,3 m sowie durch die Verfüllung des Petroleumhafens zur Herstellung der neuen Hafenbetriebsfläche verändert.

Die Gewässerbreite (Breitenvariation) im OWK Hafen wird insofern verändert, als das eine grundsätzliche Umgestaltung durch den Abtrag von Landflächen (Landspitze am Parkhafen, Verfüllung des Petroleumhafens) geplant ist (s. Antragsunterlage Teil A.3, Kap. 2.5, S. 32 ff.). In der Bilanz kommt es zu einem Verlust von ca. 5,5 ha Wasserfläche.

Parameter Struktur und Substrat des Bodens (bzw. Gewässerbodens)

Durch die grundsätzliche Umgestaltung des Vorhabensbereichs sind Veränderungen v. a. der Struktur des Gewässerbodens zu erwarten. Dies in den Bereichen die verfüllt werden (Petroleumhafen) und in den Bereichen die vertieft werden sollen und in denen zukünftig Unterhaltungsbaggerungen stattfinden (s. hierzu Veränderungen der Parameter Tiefen- und Breitenvariation).

Parameter Struktur der Uferzone

Das Bubendey-Ufer ist im Ist-Zustand durch Schüttsteine gesichert (Böschungsneigung ca. 1:1,5 bis 1:2) und liegt in einer Entfernung von ca. 75 m zur bestehenden Fahrrinne (Antragsunterlage, Plan Nr. TPE-GP-01). Der Petroleumhafen ist durch bestehende Kaimauern überprägt. Vorhabensbedingt soll die bestehende Ufersicherung rückgebaut und durch eine Kaimauer ersetzt werden. Der Petroleumhafen soll, wie bereits oben dargestellt, als Hafenbecken aufgegeben und verfüllt werden.

21 Die QK „Durchgängigkeit des Flusses“ im OWK Hafen wurde ergänzend und hilfsweise mit „mäßig“ bewertet (vgl. Kapitel 6.2.2.2.1.2 und Tabelle 6.2.3).
Fazit

Es sind vorhabensbedingte Veränderungen des zur Beschreibung und Bewertung des Zustandes der Qualitätskomponentengruppe Morphologie heranzuziehenden Parameters „direkte anthropogene Überprägung“ festgestellt worden. U. a. beeinflussen sowohl die bestehende und zu unterhaltende Fahrinne als auch die durch Deckwerke oder senkrechte Uferverbauungen (Spundwände, Mauern) geprägte Uferstruktur das Bewertungsergebnis.

Der vom Vorhaben beanspruchte Bereich ist durch Ufersicherung und Kaianlagen geprägt, so dass sich am Bewertungsergebnis des Ist-Zustandes in diesen bereits vorbelasteten Bereichen nichts ändern wird. Die bereits im Ist-Zustand bestehende Nutzung wird verfestigt bzw. fortgeführt. Die Uferstruktur entlang des Bubendey-Ufers (Schüttsteinsicherung) wird durch eine Kaimauer ersetzt.

Vorhabensbedingte Veränderungen, die die Qualitätskomponentengruppe Morphologie betreffen, werden bei der Prognose vorhabensbedingt möglicher nachteiliger Veränderungen der biologischen Qualitätskomponenten berücksichtigt.

Tideregime

Parameter Tidewasserstände und Tideströmung

Die durch das Vorhaben bewirkten Änderungen der Gewässergeometrie (Verfüllung des Petroleumhafens, Abtrag von Landflächen, Vertiefung von Gewässerbereichen) können grundsätzlich zu Änderungen der Kenngrößen der Tidodynamik führen. Für das geplante Vorhaben wurde von der Bundesanstalt für Wasserbau eine wasserbauliche Systemanalyse zu den Auswirkungen des geplanten Vorhabens durchgeführt (BAW 2008). In Antragsunterlage B.1.02 (Kap. 2.4, S. 26 ff.) werden die Veränderungen der Hydromorphologie und -dynamik, die die QK des Tidenregimes gemäß Anlage 3 Nr. 2 O GewV betreffen, zusammengefasst beschrieben.

Die vorhabensbedingt zu erwartenden Änderungen der Tidewasserstände liegen unterhalb der sinnvoll messtechnisch zu erfassenden Schwellenwerte, so dass an dieser Stelle ausschließlich auf die (lokale) Veränderung der Strömungsgeschwindigkeit (mittlere Tideströmung) eingegangen wird. Nach BAW (2008) sind ablesbare Änderungen der mittleren Tideströmungen im Bereich der Vertiefung vor dem Bubendey-Ufer und der Abbaggerung in der Einfahrt des Parkhafens zu erwarten. Die mittlere Ebb- und Flutstromgeschwindigkeit nehmen dort um bis zu -0,09 m/s ab. Die maximale mittlere Ebb- und Flutstromgeschwindigkeit nehmen um -0,11 m/s ab, worauf sich in Richtung Oberstrom eine Erhöhung um 0,04 m/s anschließt.

Fazit

Zusammenfassend ist festzustellen, dass diese vorhabensbedingten Veränderungen der hydrologischen Parameter als sehr gering einzustufen sind (BAW 2008 und UVS, IBL Umweltplanung 2009, Antragsunterlage B.1.08, Kap. 8.2.1.2.2, S. 18) und durch die ständige Dynamik überprägt werden, die astronomische Tide, Windverhältnisse und Oberwasserabfluss verursachen.

Zu möglichen Auswirkungen einer veränderten Tideströmung auf die biologischen Qualitätskomponenten der Gewässerfauna können die Aussagen der UVU (Antragsunterlage, Teil B.1, Kapitel 5) herangezogen werden.

In Antragsunterlage B.1 (Kapitel 5.2.2.2.2, S. 43) werden die vorhabensbedingten Auswirkungen auf das Makrozoobenthos (zur QK benthische wirbellose Fauna) durch die Veränderung der mittleren Tideströmung als „neutral“ bewertet. „Geringfügige Erhöhungen der Strömungsgeschwindigkeiten

22 Die QK „Morphologie“ im OWK Hafen wurde ergänzend und hilfsweise mit „unbefriedigend“ und „schlecht“ bewertet (vgl. Kapitel 6.2.2.2.1.3 und Tabelle 6.2-3).
können in der Regel von den in und auf der Gewässersohle lebenden Organismen toleriert werden, da

Zum Phytoplankton (QK Phytoplankton) wird in Antragsunterlage B.1 (Kapitel 4.2.2.2.2, S. 28 und 29) ausgeführt: „Auswirkungen der veränderten Strömungsgeschwindigkeit auf die aquatische Flora werden messtechnisch nicht erfassbar sein. Beeinträchtigungen in Biomasse und Artenspektrum der untersuchten aquatischen Flora sind nicht zu erwarten.“

Zur QK Makrophyten ist festzustellen, dass der Bereich, in dem ablesbare Änderungen der mittleren Tideströmungen zu erwarten sind (Bubendey-Ufer, Einfahrt Parkhafen), keine Bedeutung für die QK aufweist. Dies aufgrund der bereits bestehenden Überprägung (Sicherung durch Schüttsteine, Kaimauern…).

Infolge der ausschließlich schwachen und lokal begrenzten Veränderungen der Strömungsgeschwindigkeiten sind keine veränderten Habitatbedingungen zu erwarten, die für die biologischen Qualitätskomponenten zu einem Abweichen vom Status quo oder zu einer veränderten Einstufung der Potenzialbewertung führen können. Die Tideelbe ist ein dynamisches System, an das sich die in ihm vorkommenden Organismen angepasst haben. Eine weitere Befassung im Hinblick auf eine mögliche Verletzung des Verschlechterungsverbotes ist nicht erforderlich.

6.2.3.1.2 Chemische Qualitätskomponenten

Flussgebietspezifische Schadstoffe
Für die Beurteilung nachteiliger Veränderung bzgl. flussgebietspezifischen Schadstoffen sind die Erdbauarbeiten und hierin wiederum der Ausbau der sanierungsbedürftigen Bodenanteile relevant. Diese fallen im Bereich des Bubendey-Ufers sowie im Abtragsbereich der Landspitze an. Desweiteren werden das anfallende Baustellenwasser, das Ablaufwasser aus der Sandeinspülung und die Verfüllung des Petroleumhafens berücksichtigt (HPA 2009, Vorhabensbeschreibung, Antragsunterlage A.3, S. 31 ff.).

Von den für die Gesamtbaudauer des Vorhabens insgesamt veranschlagten sechs Jahren (vgl. Planfeststellungsunterlage Teil A.3, Kap. 3) nehmen die zeitlich parallel durchgeführten Erdbauarbeiten am Bubendey-Ufer ca. 2,5 Jahre und die im Abtragsbereich der Landspitze Parkhafen ca. 4,0 Jahre ein. Das Abtragsvolumen im Bauvorhaben beträgt insgesamt ca. 3.120.000 m³ (vgl. Planfeststellungsunterlage Teil A.3, Tab. 2.5.8-1). Von diesem Gesamtvolumen macht der belastete Anteil ca. 125.000 m³ aus (vgl. Kap. 2.5.1.1 Planfeststellungsunterlage Teil A.3), wobei ca. 30.000 m³ auf das Bubendey-Ufer und ca. 95.000 m³ auf den Abtragsbereich entfallen. Damit beläuft sich der kontaminierte Anteil der abzutragenden Bodenmassen auf insgesamt nur ca. 4,0% des Gesamtvolumens. Hinzukommt, dass der Abtrag im Bereich der Landspitze Parkhafen und damit auch der Großteil der Maßnahmen zur Bodensanierung im Schutze eines Restdammes erfolgt (vgl. Kap. 2.5.3 Planfeststellungsunterlage Teil A.3), durch den der Abtragsbereich zunächst vom OWK Hafen abkoppelt ist bzw. kein Kontakt zwischen Sanierungsbedürftigen Böden und dem Wasserkörper des OWK besteht.

Fazit

Wie in Kapitel 6.2.2.2.2.1 dargelegt, werden die Umweltqualitätsnormen für spezifische Schadstoffe im OWK Hafen „nicht eingehalten“. Die für die Beurteilung nachteiliger Veränderung QK flussgebietsspezifische Schadstoffe (nach Anlage 5 OGeWV) relevanten Vorhabensmerkmale und die bestehende Belastungssituation wurden oben stehend beschrieben. Vorhabensbedingt ist demnach durch die

Freilegung belaster Böden/Sedimente und die Einleitung von Baustellen- und Sandtransportwasser

Es sind somit keine veränderten Habitatbedingungen zu erwarten, die für die biologischen Qualitätskomponenten zu einem Abweichen vom Status quo oder zu einer veränderten Einstufung der Zustandsbewertung führen können. Eine weitere Befassung im Hinblick auf eine mögliche Verletzung des Verschlechterungsverbotes ist demnach nicht erforderlich.

6.2.3.1.3 Allgemeine physikalisch-chemische Qualitätskomponenten

Temperaturverhältnisse

Vorhabensbedingt ist keine Veränderung dieser Qualitätskomponente im OWK Hafen zu erwarten.

Salzgehalt

Vorhabensbedingt ist keine Veränderung dieser Qualitätskomponente im OWK Hafen zu erwarten (vgl. auch Tabelle 6.1-2).

Versauerungszustand

Vorhabensbedingt ist keine Veränderung dieser Qualitätskomponente im OWK Hafen zu erwarten.

Sauerstoffhaushalt

Für die QK Sauerstoffhaushalt relevante Faktoren sind im OWK Hafen vor allem die Wassertemperatur, der Oberwasserzufluss und damit der Eintrag organischen Materials von Oberstrom, die ungünstige spezifische Wasseroberfläche (Breiten- und Tiefenvariation) und die Verweilzeit (Ablussdynamik). Weitergehende Erläuterungen finden sich im Hintergrunddokument „Nährstoffe“ für den 2. Bewirtschaftungszeitraum 2016-2021. FGG Elbe (2014c, S. 28) führt aus, dass „signifikante positive Effekte im Hinblick auf den Sauerstoffhaushalt der Tideelbe nur dann zu erwarten sind, wenn es gelingt, die Nährstoffe (Stickstoff, Phosphor) und die daraus resultierende Algenbiomasse (organischer Kohlen-

Im OWK Hafen wird das den Sauerstoffhaushalt beeinflussende Verhältnis der Wasseroberfläche zu dem darunter befindlichen Wasservolumen (spezifische Wasseroberfläche) durch die Teilmaßnahmen des Vorhabens (Vertiefung vor dem Bubendeuyfer, Wendekreis und Zufahrt Parkhafen, Verfüllung des Petroleumhafens) nur lokal und insgesamt neutral beeinflusst. Veränderungen der spezifischen Wasseroberfläche sind lediglich im Promillebereich zu erwarten (zum Vergleich: die tidebedingten Schwankungen der spezifischen Wasseroberfläche im Bereich des OWK Hafen können mit ca. 20% angesetzt werden). Ein messtechnisch erfassbarer Absinken des Sauerstoffgehaltes < 1% ist vorhabensbedingt ebenso wenig zu erwarten wie ein Effekt auf die biologischen Qualitätskomponenten ist.

Nährstoffverhältnisse

Bei den Erdbaumaßnahmen fallen Baustellenwässer an, die u. a. erhöhte Konzentrationen der Summenparameter TOC (Gesamter organischer Kohlenstoff) sowie der Parameter Eisen (Fe) und Ammonium-Stickstoff (NH4-N) aufweisen können. BWS (2009, Antragsunterlage B.2.3) gibt dazu einen Überblick. Die Baustellenwässer werden mittels geeigneter Maßnahmen, die dem Stand der Technik entsprechen, während des Baubetriebes im Abtrags- und Einlagerungsbereich behandelt, so dass keine signifikanten Nährstoffeinträge in Oberflächengewässer zu erwarten sind.

Fazit zu den allgemeinen physikalisch-chemischen Qualitätskomponenten

25 Die QK „Nährstoffverhältnisse“ im OWK Hafen wurde wie in Kapitel 6.2.2.2.3 begründet mit „mäßig“ bewertet.

Wie oben dargelegt, sind infolge der lediglich theoretischen Veränderungen der Sauerstoffgehalte keine veränderten Habitatbedingungen zu erwarten, die für die biologischen Qualitätskomponenten zu einem Abweichen vom Status quo oder zu einer veränderten Einstufung der Zustandsbewertung führen können. Eine weitere Befassung im Hinblick auf eine mögliche Verletzung des Verschlechterungsverbotes ist demnach nicht erforderlich.

6.2.3.2 Vorhabensbedingt zu erwartende Veränderungen der biologischen Qualitätskomponenten im OWK Hafen (DE_RW_DEHH_el_02)

Vorhabensbedingte Veränderungen auf die biologischen QK werden nachfolgend differenziert nach Gewässerflora, benthischer wirbellosen Fauna und der Fischfauna dargestellt.

6.2.3.2.1 Gewässerflora

QK Phytoplankton
Die QK Phytoplankton im OWK Hafen ist in der Aktualisierung des Bewirtschaftungsplans 2016-2021 nicht in die niedrigste Potenzialklasse („schlecht“) eingestuft worden (s. Tabelle 6.1-4). Dementsprechend wird nachfolgend untersucht, ob vorhabensbedingt eine veränderte Einstufung der QK im Oberflächenwasserkörper (Klassenwechsel) zu erwarten ist. Die Vorgehensweise zur Bewertung im Zusammenhang mit der Bewirtschaftungsplanung wurde in Kapitel 6.2.2.1.1.1 beschrieben.

Vorhabensbedingte Veränderungen der QK Phytoplankton im OWK Hafen (DE_RW_DEHH_el_02)

Vor diesem Hintergrund ist die Frage zu beantworten, ob das Vorhaben geeignet sein könnte, eine veränderte (ungünstigere) Einstufung der QK im Oberflächenwasserkörper (= Klassenwechsel) herbeizuführen und damit eine Verschlechterung des zwangsläufig nur mäßigen Potenzials auszulösen.
Nachfolgend werden die vorhabensbedingt möglichen nachteiligen Veränderungen der QK Phytoplankton im OWK Hafen dargestellt.

- Infolge der ausschließlich schwachen und lokal begrenzten Veränderungen der Strömungsge-schwindigkeiten (zur QK Tidenregime) sind keine veränderten Habitatbedingungen für die QK Phytoplankton zu erwarten, die zu einem veränderten Bewertungsergebnis führen könnte. Dies wurde bereits in Kapitel 6.2.3.1 festgestellt.

- Ursächlich für den unbefriedigenden Zustand bzw. das mäßige Potenzial sind v. a. die erhöhten Nährstofffrachten, die maßgeblich aus dem Einzugsgebiet der Oberen und Mittleren Elbe stammen (vgl. u. a. FGG Elbe 2014a, S. 27 ff.). Wie bereits in Kapitel 6.2.3.1.3 dargestellt sind vorhabensbedingt aufgrund geeigneter und umfassender Vermeidungsmaßnahmen keine mess- und beobachtbaren Effekte auf die Nährstoffgehalte im OWK Hafen zu erwarten (BWS GmbH 2009, Antragsunterlage B.2.3). Demnach sind vorhabensbedingt keine veränderten Habitatbedingungen für die QK Phytoplankton zu erwarten.

- Das Vorhaben umfasst die Umwandlung von Land- zu Gewässerbereichen (Abgrabung von 7,5 ha im Landfläche) sowie die Umwandlung von Gewässer- zu Landbereichen (Verfüllung von 13 ha Hafenbecken im Petroleumhafen). In der Flächenbilanz ist ein Verlust von ca. 5,5 ha Wasserfläche zu erwarten. Dies sind ca. 0,2% der Gesamtfläche des OWK. Jedoch ist der Petroleumhafen, bedingt durch die Hauptstrom-nahe Lage sowie starke Trübung und eine Gewässertiefe von ca. 11 m bis 13 m26, nur eingeschränkt ein geeigneter Phytoplankton-Lebensraum. Das Becken ist vielmehr Bestandteil der Tiefwasserbereiche des Hamburger Hafens, die zur Sterbezone des von oberstrom eingetragenen Süßwasserplanktons gehören. Demnach sind an dieser Stelle vorhabensbedingt keine veränderten Habitatbedingungen für die QK Phytoplankton zu erwarten, die auf die Bewertung im OWK durchschlagen könnten.

Fazit und Gesamtbewertung zu vorhabensbedingten Veränderungen der QK Phytoplankton im OWK Hafen

26 Nach Antragsunterlage B1.08 (S. 5) liegt die Solltiefe im Petroleumhafen in den zentralen Bereichen generell bei NN -11 m. Im Bereich des Anlegers der Firma DUPEG (nördlich Seite) befindet sich eine Liegewanne mit einer Solltiefe von NN -13 m.
QK Makrophyten

Die QK Makrophyten im OWK Hafen ist in der Aktualisierung des Bewirtschaftungsplans 2016-2021 nicht in die niedrigste Potenzialklasse („schlecht“) eingestuft worden (s. Tabelle 6.1-4). Dementsprechend wird nachfolgend untersucht, ob vorhabensbedingt eine veränderte Einstufung der QK im Oberflächenwasserkörper (= Klassenwechsel) zu erwarten ist.

Vorhabensbedingte Veränderungen der QK Makrophyten im OWK Hafen (DE_RW_DEHH_el_02)

Das Vorhaben ist im OWK Hafen geplant und umfasst die Umgestaltung einer bereits bestehenden Hafennutzung. Im OWK Hafen liegen keine Monitoringstationen (Stiller 2008, 2013) zur Untersuchung der QK Makrophyten.

Vorhabensbedingt nachteilige Veränderungen der QK Makrophyten, die geeignet sein könnten, die zur Zustands-/Potenzialbewertung heranzuziehenden Parameter im OWK Hafen nachteilig zu verändern, sind von vornherein auszuschließen. Zu begründen ist dies wie folgt:

- Die ausschließlich schwachen Veränderungen der Strömungsgeschwindigkeiten (zur QK Tidenregime) sind auf den Vorhabensbereich begrenzt und betreffen demnach Bereiche ohne Bedeutung für die QK Makrophyten.
- In einem bereits stark überformten Bereich wird vorhabensbedingt eine Veränderung der QK Morphologie (Parameter Uferstruktur) durch die vorhabensbedingte Umgestaltung (Rückbau der bestehenden Ufersicherung, Errichtung einer Kaimauer, Verfüllung des Petroleumhafens) erfolgen. Diese Bereiche weisen bereits im Ist-Zustand keine Bedeutung für die QK Makrophyten auf.

Fazit und Gesamtbewertung zu vorhabensbedingten Veränderungen der QK Makrophyten im OWK Hafen

Insgesamt sind keine Wirkpfade erkennbar, die zu einer Veränderung der QK Makrophyten im OWK Hafen führen könnten.

6.2.3.2.2 Gewässerfauna

QK benthische wirbellose Fauna

Die QK benthische wirbellose Fauna im OWK Hafen ist in der Aktualisierung des Bewirtschaftungsplans 2016-2021 nicht in die niedrigste Potenzialklasse („schlecht“) eingestuft worden (s. Tabelle 6.1-4). Dementsprechend wird nachfolgend untersucht, ob vorhabensbedingt eine veränderte Einstufung der QK im Oberflächenwasserkörper (Klassenwechsel) zu erwarten ist.

Vorhabensbedingte Veränderungen der QK benthische wirbellose Fauna im OWK Hafen (DE_RW_DEHH_el_02)

Flachwasserbereiche, flach geneigte Ufer und Unterwasserböschungen, große Habitat- und Strukturvielfalt, geringe anthropogene Überprägung und Störung etc.) sind in einem industriell genutzten Hafengebiet per se nicht realisierbar.\(^{28}\)

Vor diesem Hintergrund ist die Frage zu beantworten, ob das Vorhaben geeignet sein könnte, eine veränderte (ungünstigere) Einstufung der QK im Oberflächenwasserkörper (= Klassenwechsel) herbeizuführen und damit eine Verschlechterung des zwangsläufig nur mäßigen Potenzials auszulösen.

Nachfolgend werden die vorhabensbedingt möglichen nachteiligen Veränderungen der QK benthische wirbellose Fauna im OWK Hafen dargestellt.

- Infolge der vorhabensbedingt ausschließlich schwach und lokal begrenzt zu erwartenden Veränderungen der Strömungsgeschwindigkeiten (zur QK Tidenregime) sind keine veränderten Habitatbedingungen für die QK benthische wirbellose Fauna zu erwarten, die zu einem verändernden Bewertungsergebnis führen könnten. Dies wurde bereits in Kapitel 6.2.3.1 festgestellt.

- Veränderungen durch einen ggf. erhöhten Unterhaltungsaufwand werden ebenfalls lokaler Art und zudem nur kurzfristig wirksam sein. Die QK benthische wirbellose Fauna im OWK Hafen ist an Störungen durch Unterhaltungsmaßnahmen adaptiert.\(^{29}\) Die vorhabensbedingten Veränderungen sind ungeeignet, auf die Bewertung der QK im OWK zu wirken.

Fazit und Gesamtbewertung zu vorhabensbedingten Veränderungen der QK benthische wirbellose Fauna im OWK Hafen

Vorhabensbedingt nachteilige Veränderungen, die zu einer veränderten (ungünstigeren) Einstufung (= Potenzialklassenwechsel) der QK benthische wirbellose Fauna im OWK Hafen führen können, sind nicht zu erwarten. Insgesamt sind keine belastbaren Wirkpfade und davon ausgehende Veränderungen erkennbar, die zu einer Verschlechterung der QK benthische wirbellose Fauna im OWK Hafen führen könnten.

Abbildung 6.2-3: Lage der beprobten Muschelbank im OWK Hafen

Quelle: Antragsunterlage TPE-GP-0.1 (Lageplan geplante Erdbaumaßnahmen)

QK Fischfauna

Die QK Fischfauna im OWK Hafen ist in der Aktualisierung des Bewirtschaftungsplans 2016-2021 nicht in die niedrigste Potenzialklasse („schlecht“) eingestuft worden (s. Tabelle 6.1-4). Dementsprechend wird nachfolgend untersucht, ob vorhabensbedingt eine veränderte Einstufung (Klassenwechsel) der QK im Oberflächengewässer zu erwarten ist.

Vorhabensbedingte Veränderungen der QK Fischfauna im OWK Hafen (DE_RW_DEHH_el_02)

Vor diesem Hintergrund ist die Frage zu beantworten, ob das Vorhaben geeignet sein könnte, eine veränderte (ungünstigere) Einstufung der QK Fische im Oberflächengewässer (= Klassenwechsel)
herbeizuführen und damit eine Verschlechterung des zwangsläufig nur mäßigen Potenzials auszulösen.

Nachfolgend werden die vorhabensbedingt möglichen nachteiligen Veränderungen der QK Fischfauna im OWK Hafen dargestellt.

- Infolge der ausschließlich schwachen und lokal begrenzten Veränderungen der Strömungsgeschwindigkeiten (zur QK Tidenregime) sind keine veränderten Habitatbedingungen für die QK Fischfauna zu erwarten, die zu einem veränderten Bewertungsergebnis führen könnte. Dies wurde bereits in Kapitel 6.2.3.1 festgestellt.

- Wie bereits in Kapitel 6.2.3.1.3 dargelegt, sind infolge der lediglich theoretischen Veränderungen der Sauerstoffgehalte keine veränderten Habitatbedingungen für die QK Fischfauna zu erwarten, die zu einem veränderten Bewertungsergebnis führen könnten.

- Veränderungen durch einen ggf. erhöhten Unterhaltungsaufwand werden ebenfalls lokaler Art und zudem nur kurzfristig wirksam sein. Sie sind ungleich, auf die Bewertung der QK im OWK zu wirken. Zudem ist QK Fischfauna im OWK Hafen an Störungen durch Unterhaltungsbaggerungen adaptiert.30

Fazit und Gesamtbewertung zu vorhabensbedingten Veränderungen der QK Fischfauna im OWK Hafen

Vorhabensbedingt nachteilige Veränderungen, die zu einer veränderten (ungünstigeren) Einstufung (= Potenzialklassenwechsel) der QK Fischfauna im OWK Hafen führen können, sind nicht zu erwarten. Insgesamt sind keine belastbaren Wirkpfade und davon ausgehende Veränderungen erkennbar, die zu einer Verschlechterung der QK Fischfauna im OWK Hafen führen könnten.

6.2.3.3 Vorhabensbedingt zu erwartende Veränderungen des chemischen Zustands gem. Anlage 7 OGewV im OWK Hafen (DE_RW_DEHH_el_02)

Vorhabensbedingte Veränderungen des chemischen Zustands im OWK Hafen (DE_RW_DEHH_el_02)

Für die Beurteilung nachteiliger Veränderung des chemischen Zustands sind die Erdbauarbeiten und hierin wiederum der Ausbau der sanierungsbedürftigen Bodenanteile relevant. Diese fallen im Bereich des Bubendey-Ufers sowie im Abtragsbereich der Landspitze an. Desweiteren werden das anfallende

Baustellenwasser, das Ablaufwasser aus der Sandeinspülung und die Verfüllung des Petroleumhafens berücksichtigt (HPA 2009, Vorhabensbeschreibung, Antragsunterlage A.3, S. 31ff.).

Anfallendes Baustellenwasser wird gesammelt und vor der Einleitung in die Elbe entsprechend der wasserrechtlichen Erlaubnis 22/09 (4/3 Al) aufbereitet. Hiernach dürfen 140 m³/h, 3300 m³/d bzw. 41000 m³/d und insgesamt 2 Mio. m³ eigeleitet werden. Dabei sind Überwachungswerte für Benzol und Derivate (hierunter fällt die Stoffklasse BTEX) (20µg/l), PAK (0,2µg/l) und MKW (10mg/l) einzuhalten. In dem Antrag zur wasserrechtlichen Erlaubnis steht hierzu (HPA/BWS 2009, Antrag auf wasserrechtliche Erlaubnis, S. 10): „Für das tatsächlich aus der Behandlungsanlage ablaufende Wasser werden deutliche Unterschreitungen der Überwachungswerte erwartet.“ Es sind umfangreiche baubegleitende Wasseruntersuchungen vorgesehen, die ggf. zu weiteren angepassten Behandlungsschritten des Abwassers führen (HPA/BWS 2009, Antrag auf wasserrechtliche Erlaubnis, S. 15)

Vorhabensbedingt ist die Verfüllung des Petroleumhafens geplant (HPA 2009, Vorhabensbeschreibung, Antragsunterlage A.3, S. 41 ff.). Dabei trennt ein frühzeitig errichteter Fangdamm den westlichen Teil des Hafens von der Elbe ab. Hier werden belastete Böden aus dem Bodenabtrag und Weichschichten eingebracht (mit Gehalten von weniger als 5.000 mg/kg TS MKW und/ oder 30 mg/kg TS BTEX). Im östlichen, der Elbe zugewandten Teil werden unbelastete Sande eingespült, wobei hieraus das vorhabensbedingt anfallende Sandtransportwasser resultiert. Nach HPA

Von den für die Gesamtbauleihe des Vorhabens insgesamt veranschlagten sechs Jahren (vgl. Planfeststellungsunterlage Teil A.3, Kap. 3) nehmen die zeitlich parallel durchgeführten Erdbauarbeiten am Bubendey-Ufer ca. 2,5 Jahre und die im Abtragsbereich der Landspitze Parkhafen ca. 4,0 Jahre ein. Das Abtragsvolumen im Bauvorhaben beträgt insgesamt ca. 3.120.000 m³ (vgl. Planfeststellungsunterlage Teil A.3, Tab. 2.5.8-1). Von diesem Gesamtvolumen macht der belastete Anteil ca. 125.000 m³ aus (vgl. Kap. 2.5.1.1 Planfeststellungsunterlage Teil A.3), wobei ca. 30.000 m³ auf das Bubendey-Ufer und ca. 95.000 m³ auf den Abtragsbereich entfallen. Damit beläuft sich der kontaminierte Anteil der abzutragenden Bodenmassen auf insgesamt ca. 4,0% des Gesamtvolumens. Hinzukommt, dass der Abtrag im Bereich der Landspitze Parkhafen und damit auch der Großteil der Maßnahmen zur Bodensanierung im Schutze eines Restdammes erfolgt (vgl. Kap. 2.5.3 Planfeststellungsunterlage Teil A.3), durch den der Abtragsbereich zunächst vom OWK Hafen abkoppelt ist bzw. kein Kontakt der sanierungsbedürftigen Böden mit dem Wasserkörper des OWK Hafen besteht.

Nachfolgend werden die Schadstoffe mit Überschreitung der UQN im Ist-Zustand betrachtet (Tabelle 6.2-17).
Tabelle 6.2-17: Zuordnung der Schadstoffe mit Überschreitungen der Umweltqualitätsnormen im OWK Hafen zu den Stoffklassen der festgestellten Belastungen

<table>
<thead>
<tr>
<th>Belastung mit (Schadstoff und nach Nr. nach Anlage 7 OGewV)</th>
<th>Zuordnung zu einer der vorhabensrelevanten Stoffklassen</th>
<th>UQN in Biota und/oder im Wasser der Tidenelbe bereits überschritten (ja/nein)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracen (Nr. 2)</td>
<td>PAK</td>
<td>ja</td>
</tr>
<tr>
<td>Bromierte Diphenylether (Nr. 5)</td>
<td>Nein, eigene Stoffklasse</td>
<td></td>
</tr>
<tr>
<td>Fluoranthen (Nr. 15)</td>
<td>PAK</td>
<td>ja</td>
</tr>
<tr>
<td>HCB [µg/kg] (Nr. 16)</td>
<td>aromatischer Chloro Kohlenwasserstoff</td>
<td></td>
</tr>
<tr>
<td>Quecksilber [mg/kg] (Nr. 21)</td>
<td>Nein – Schwemmetall, Nachweise im Bereich der Landspitze des Parkhafens</td>
<td></td>
</tr>
<tr>
<td>PAK (Nr. 28)</td>
<td>PAK</td>
<td>ja</td>
</tr>
<tr>
<td>Nickel [mg/kg] (Nr. 23)</td>
<td>Nein – Übergangsmetall, Nachweise im Bereich der Landspitze des Parkhafens</td>
<td></td>
</tr>
<tr>
<td>TBT [µg/kg] (Nr. 30)</td>
<td>Nein – Organische Zinnverbindungen, Nachweise im Petroleumhafen</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen: Bei der Gruppe der polycyclischen aromatischen Kohlenwasserstoffe (PAK) ist nach OGewV jede einzelne Umweltqualitätsnorm für Benzo(a)pyren, für die Summe von Benzo(b)fluoranthen und Benzo(k)floranthren, für die Summe von Benzo(g,h,i)perylen und für Indeno(1,2,3-cd)pyren einzuhalten.

Fazit und Gesamtbewertung zu vorhabensbedingten Veränderungen des chemischen Zustands im OWK Hafen

Eine Verschlechterung des chemischen Zustands im OWK Hafen ist vorhabensbedingt nicht zu erwarten.
6.2.4 Zusammenfassung und Gesamtbewertung zum OWK Hafen
(DE_RW_DEHH_el_02)

Dieses Ergebnis ist ebenso auf die in den OWK Hafen einmündende Flottbek zu übertragen.

6.2.5 Prüfung möglicher vorhabensbedingter Gefährdungen der Zielerreichung des guten ökologischen Potenzials und des guten chemischen Zustands im OWK Hafen

Es wird untersucht, ob die vorhabensbedingt zu erwartenden Veränderungen die zur Zielerreichung erforderlichen Maßnahmen ganz oder teilweise behindern bzw. erschweren, so dass die Zielerreichung des guten ökologischen Potenzials und des guten chemischen Zustands vorhabensbedingt gefährdet bzw. verzögert werden könnte (vgl. § 27 Abs. 1, Nr. 2 und Abs. 2 Nr. 2 WHG sowie § 44 WHG).

6.2.5.1 Zielerreichung „gutes ökologisches Potenzial“

Auf Grundlage der Ergebnisse der in Kapitel 6.2.3 beschriebenen Auswirkungen ist festzustellen, dass die Zielerreichung des guten ökologischen Potenzials der im OWK Hafen nicht erschwert bzw. gefährdet wird. Dies wird nachfolgend begründet.

Prüfmaßstab „gutes ökologisches Potenzial“

Umweltziele und Maßnahmen zur Erreichung des „guten ökologischen Potenzials“

Im Maßnahmenprogramm (FGG Elbe 2014f) wird zwischen grundlegenden Maßnahmen und ergänzenden Maßnahmen unterschieden. Die erfolgreiche Umsetzung der grundlegenden Maßnahmen ist zur Erreichung der Umweltziele bzw. zur Erreichung des guten ökologischen Potenzials erforderlich. Unter anderem gehören dazu Maßnahmen zur Umsetzung der in Anhang VI Teil A WRRL genannten EG-Richtlinien, Maßnahmen zur Umsetzung der Emissionsbegrenzungen gemäß Artikel 10 WRRL (umgesetzt über diverse bundesrechtliche Verordnungen), Maßnahmen bezogen auf Wasserdienstleistungen und -nutzungen, Entnahme von Trinkwasser, Maßnahmen zur Begrenzung der Entnahme von Oberflächensüßwasser und Grundwasser sowie die Aufstauung von Oberflächensüßwasser,
Maßnahmen zur Regelung für Punktquellen (u. a. Emissionsbegrenzungen) und diffusen Quellen (z. B. Landwirtschaft) sowie Maßnahmen zur Vermeidung und Reduzierung von Schadstoffeinträgen in die Gewässer.

Nach FGG Elbe (2014a, Kap. 7.3, S. 148) sind ergänzende Maßnahmen „gemäß Art. 11 Abs. 4 WRRL […] für alle der identifizierten überregional bedeutsamen Belastungsschwerpunkte erforderlich, da die festgelegten Umweltziele nach Art. 4 mit den in Kapitel 7.3 beschriebenen grundlegenden Maßnahmen nicht erreicht werden können. Überregional ausgerichtet ist das Maßnahmenprogramm demnach auf

- Verbesserung der Gewässerstruktur und Durchgängigkeit,
- Reduktion der signifikanten stofflichen Belastungen aus Nähr- und Schadstoffen,
- Ausrichtung auf ein nachhaltiges Wassermanagement,
- Verminderung regionaler Bergbaufolgen,
- Berücksichtigung der Folgen des Klimawandels."

Vorhabensbedingte Auswirkungen auf die Zielerreichung

Tabelle 6.2-18: Übersicht über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung erforderlichen Maßnahmen zur Reduzierung von hydromorphologischen Veränderungen des Entwurfes zum aktualisierten Maßnahmenprogramms (FGG Elbe 2014f)

<table>
<thead>
<tr>
<th>OWK Name/EU-Code</th>
<th>Maßnahmentypen (FGG Elbe 2014a, FGG Elbe 2014f, Anhang M4)</th>
<th>Textliche Erläuterung nach LAWA Maßnahmenkatalog (FGG Elbe 2014f, Anhang M1)</th>
<th>Einschätzung vorhabensbedingter Auswirkungen auf die Maßnahmentypen/-gruppen bzw. deren Umsetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hafen DE_RW_DEHH_el_02</td>
<td>71 – Maßnahmen zur Habitatverbesserung im vorhandenen Profil
74 – Maßnahmen zur Auenentwicklung und zur Verbesserung von Habitaten</td>
<td>„Bauliche Maßnahmen zur Verbesserung der Sohlstruktur, Breiten-/ und Tiefenvarianz ohne Änderung der Linienführung (insbesondere wenn keine Fläche für Eigenentwicklung vorhanden ist), z. B. Einbringen von Störsteinen oder Totholz zur Erhöhung der Strömungsdiversität, Erhöhung des Totholzdargebots, Anlage von Kieslachiplätzen.“</td>
<td>Die Maßnahmen zur Habitatverbesserung im vorhandenen Profil werden im Maßnahmenprogramm (FGG Elbe 2014f) nicht weiter konkretisiert. Vorhabensbedingt ist die Umgestaltung einer bereits bestehenden Hafennutzung geplant. Entsprechende Maßnahmen, die durch das Vorhaben in ihrer Umsetzung erschwert werden könnten, sind für den Vorhabensbereich nicht bekannt (s. auch Tabelle 6.2-19).</td>
</tr>
<tr>
<td>Erläuterung: Die Nummer verweist auf die durchnummerierten Maßnahmen des LAWA Maßnahmenkatalogs der im Maßnahmenprogramm als Anhang M1 enthalten ist und der nach FGG Elbe 2014f (Kap. 4.6, S. 25) grundlegend berücksichtigt worden ist: „Die Maßnahmen wurden auf Grundlage des in der LAWA abgestimmten Maßnahmenkatalogs (s. Anhang M1) festgelegt.“</td>
<td>Ergänzung der Untersuchung um Einzelmaßnahmen (Arbeitsgruppenergebnis der AG TES)
In Tabelle 6.2-19 sind zur Zielerreichung vorgeschlagene Einzelmaßnahmen in der Tideelbe gelistet (Arbeitsgruppenergebnis der AG TES, schriftl. Mitt. vom 09.09.2015).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 6.2-19: Übersicht über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung vorgeschlagenen Einzelmaßnahmen zur Reduzierung von hydromorphologischen Veränderungen (Arbeitsgruppenergebnis der AG TES, schriftl. Mitt. vom 09.09.2015)

<table>
<thead>
<tr>
<th>Maßnahmenbezeichnung (entspricht Kurz- oder Langbezeichnung des Maßnahmenblattes)</th>
<th>Angabe des konkreten Ortes der Maßnahme, Maßnahmenbeschreibung und Ziel der Maßnahme</th>
<th>Einschätzung vorhabensbedingter Auswirkungen auf die Maßnahmen bzw. deren Umsetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entschlammung des Bahrenfelder Sees</td>
<td>Konkrete Ortsangabe: Bahrenfelder See</td>
<td>Der Bahrenfelder See liegt im Stadtgebiet Hamburg (Bezirk Altona). Aufgrund fehlender Verbindung zur Tideelbe sind vorhabensbedingte Auswirkungen auf den Bahrenfelder See nicht zu erwarten bzw. konterkariert daher die benannte Maßnahme nicht.</td>
</tr>
</tbody>
</table>

6.2.5.2 Zielerreichung „guter chemischer Zustand“

<table>
<thead>
<tr>
<th>Maßnahmenbezeichnung (ent- spricht Kurz- oder Langbezeichnung des Maßnahmenblattes)</th>
<th>Angabe des konkreten Ortes der Maßnahme, Maßnahmenbeschreibung und Ziel der Maßnahme</th>
<th>Einschätzung vorhabensbedingter Auswirkungen auf die Maßnahmen bzw. deren Umsetzung</th>
</tr>
</thead>
</table>

Festzustellen ist, dass das Vorhaben nicht geeignet ist, die Wirksamkeit dieser Maßnahmen (Reduzierung und Einstellung der Einleitung entsprechender Schadstoffe) einzuschränken. Die Zielerreichung bezogen auf den chemischen Zustand in den OWK wird daher nicht be- oder verhindert.

Darüber hinaus ist zur Erreichung des guten chemischen Zustands festzustellen, dass das Vorhaben die Konzentration von prioritären und prioritär gefährlichen Schadstoffen, die den chemischen Zustand bestimmen, nicht dauerhaft nachteilig beeinflusst.

Darauf hinzuweisen ist, dass es aufgrund der geplanten Maßnahmen zu einer Reduzierung des Schadstoffaustrags in den Oberflächenwasserkörper Hafen gegenüber dem Ist-Zustand kommen wird.
Dies ist, auch im Kontext der WRRL (hier zum chemischen Zustand), grundsätzlich positiv zu bewerten, auch wenn ein derartiger lokaler Effekt ungeeignet ist, die Bewertung im OWK zu beeinflussen.

6.3 Oberflächenwasserkörper Elbe-Ost, Elbe-West, Elbe-Übergangsgewässer und Elbe-Küstengewässer

Auswirkungen auf die hydromorphologischen Qualitätskomponenten

Tidenregime

Gemäß BAW (2008, Antragsunterlage C.1.2) liegen die vorhabensbedingten Veränderungen der Tidewasserstände in den OWK Elbe-Übergangsgewässer und Außenelbe-Nord unterhalb des durch die BAW (2008) benannten sinnvoll, messtechnisch zu erfassenden Schwellenwertes für Tidewasserstände von 1,0 cm bzw. 0,01 m. Veränderungen sind zudem nur in Teilbereichen der Oberflächenwasserkörper zu erwarten: „Durch die untersuchten Maßnahmen ändern sich die Tidewasserstände wie folgt: „Das mittlere Tidehochwasser wird zwischen Elbe-Km 730 und 625 um weniger als der Schwellenwert von ±0,01 m verändert. Das mittlere Tideniedrigwasser sinkt zwischen ca. Elbe-Km 718 und Elbe-Km 610 um weniger als der Schwellenwert von -0,01 m ab. Für den mittleren Tidehub ergibt sich ein Anstieg im Bereich zwischen Tidehub ergibt sich ein Anstieg im Bereich zwischen Elbe-Km 690 und Elbe-Km 610 um weniger als der Schwellenwert von 0,01 m."

Vorhabensbedingte Veränderungen des mittleren Tidehochwassers in den OWK
- Außenelbe-Nord ± 0,0 m
- Elbe-Übergangsgewässer -0,001 bis 0,0 m
- Elbe-West 0,001 bis 0,003 m
- Elbe Ost ± 0,0 m

Quelle: Bild 6 (BAW 2008, S. 12): Differenz des mittleren Tidehochwassers (Westerweiterung Eurogate – PIZ)

Vorhabensbedingte Veränderungen des mittleren Tideniedrigwassers in den OWK
- Außenelbe-Nord 0,0 bis 0,001 m
- Elbe-Übergangsgewässer 0,0 bis 0,003 m
- Elbe-West 0,003 bis 0,004 m
- Elbe Ost 0,0 bis 0,004 m

Bild 8 (BAW 2008, S. 13): Differenz des mittleren Tideniedrigwassers (Westerweiterung Eurogate – PIZ)

Vorhabensbedingte Veränderungen des mittleren Tidehubs in den OWK
- Außenelbe-Nord ± 0,0 m
- Elbe-Übergangsgewässer 0,0 bis 0,003 m
- Elbe-West 0,003 bis 0,004 m
- Elbe Ost 0,0 bis 0,003 m

Abbildung 6.3-1: Zu erwartende vorhabensbedingte Veränderungen von Tidewasserständen (Prognose der BAW 2008, Westerweiterung Eurogate – PIZ)

Quelle: BAW (2008, S. 12 bis 14), Abbildung ergänzt durch IBL Umweltplanung um die räumlichen Grenzen der Oberflächenwasserkörper
Allgemeine physikalisch-chemische Qualitätskomponenten

Das Vorhaben ist ungeeignet auf die gem. Anlage 3 Nr. 3.2 OGewV in der Kategorie Übergangs- und Küstengewässer zudem zu berücksichtigenden allgemeinen physikalisch-chemischen QK Sichttiefe, Temperaturverhältnisse, Sauerstoffhaushalt und Nährstoffverhältnisse zu wirken.

Salzgehalt

Vorhabensbedingte Veränderungen des minimalen Salzgehaltes in den
- Elbe-Übergangsgewässer 0,00 bis max. 0,1 PSU
- Außenelbe-Nord -0,04 bis max. ca. 0,14 PSU

Vorhabensbedingte Veränderungen des mittleren Salzgehaltes in den
- Elbe-Übergangsgewässer 0,00 bis max. 0,08 PSU
- Außenelbe-Nord 0,00 bis max. ca. 0,08 PSU

Vorhabensbedingte Veränderungen der Salzgehaltsvariation in den
- Elbe-Übergangsgewässer -0,08 bis max. 0,06 PSU
- Außenelbe-Nord -0,12 bis max. ca. 0,03 PSU

Abbildung 6.3-2: Zu erwartende vorhabensbedingte Veränderungen des Salzgehaltes (Prognose der BAW 2008, Westerweiterung Eurogate – PIZ)

Quelle: BAW (2008, S. 19 bis 22), Abbildung ergänzt durch IBL Umweltplanung um die räumlichen Grenzen der Oberflächenwasserkörper
Fazit zu den allgemeinen physikalisch-chemischen Qualitätskomponenten

Nach BAW (2008, S. 23) verdeutlichen die in Abbildung 6.3-2 aufgezeigten Ergebnisse, dass „...die Änderungen gemessen an der natürlichen Variabilität sehr gering...“ sind.

Bezogen auf die Veränderungen der Salzgehalte ist festzustellen, dass die vorhabensbedingten Veränderungen zudem in Bereichen (Übergangsgewässer, Küstengewässer) liegen, die bereits im Ist-Zustand durch wechselnde Salzgehalte geprägt sind. Infolge der ausschließlich sehr geringen Veränderungen sind demnach keine veränderten Habitatbedingungen zu erwarten, die für die biologischen Qualitätskomponenten zu einem Abweichen vom Status quo oder zu einer veränderten Einstufung der Zustandsbewertung im OWK Außenelbe-Nord bzw. der Potenzialbewertung im OWK Elbe-Übergangsgewässer führen können. Eine weitere Befassung im Hinblick auf eine mögliche Verletzung des Verschlechterungsverbotes ist demnach nicht erforderlich.

Für die in Tabelle 6.1-5 benannten und im Bereich der Veränderungen liegenden Nebenflüsse kann das oben benannte Ergebnis übertragen werden.

Aufgrund der ausschließlich indirekten und sehr geringen Veränderungen ist zudem von keiner vorhabensbedingt erschwerten Umsetzung der Zielerreichung zu erwarten.

6.4 Ausnahmeggründe

Im Ergebnis der Ausführungen in Kapitel 6.2 und 6.3 treten, unter der Prämissen der Auslegung des Verschlechterungsbegriffs in Kapitel 4, keine Verschlechterungen des ökologischen Zustands (Potenzials) im Sinne der §§ 27 und 44 WHG auf. Ausführungen zu Ausnahmegründen gem. § 31 Abs. 2 WHG sind somit nicht erforderlich.
7 Grundwasserkörper

7.1 Identifizierung der betroffenen Grundwasserkörper unter Berücksichtigung untersuchungsrelevanter Vorhabenswirkungen

Vorhabensbedingte Wirkungen, die sonstige GWK berühren könnten, sind aufgrund der hinsichtlich des Grundwassers ausschließlich lokal wirksamen Vorhabensmerkmale (s. auch UVS, IBL Umweltplanung, Antragsunterlagen B.1.08, Kap. 8.2.2 (S. 25 ff.) sowie Antragsunterlage B.2.3, Kap. 6.3, S. 37 ff.) auszuschließen.

Tabelle 7.1-1: Grundwasserkörper im Vorhabensbereich

<table>
<thead>
<tr>
<th>Name des Grundwasserkörpers</th>
<th>Kurzbezeichnung</th>
<th>Flächengröße km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Este/Seeve Lockergestein</td>
<td>NI11_3</td>
<td>1.105</td>
</tr>
<tr>
<td>Braunkohlensande Mittelholstein</td>
<td>N8 (tief)</td>
<td>2.215</td>
</tr>
</tbody>
</table>
Abbildung 7.1-1: Oberflächennahe Grundwasserkörper und Schutzzonen (Wasserschutzgebiete) in Hamburg

Quelle: BSU (2009), verändert (rote Linie = Stadtgrenze Hamburg)

Abbildung 7.1-2: Tiefer Grundwasserkörper N8 im Vorhabensbereich

Quelle: BSU (2009), verändert (rote Linie = Stadtgrenze Hamburg)

Für den oberflächennahen GWK gilt generell, dass dieser mit 10–30 m Mächtigkeit im oberen quartären Bereich liegt (Sediment der Saalekaltzeit im Geestbereich sowie der Weichselkaltzeit im Bereich der Marschen). Darüber befinden sich wenig wasserdurchlässige Deckschichten (Weichschichten, s.u.) mit 5–10 m Mächtigkeit. BSU (2005b) weist darauf hin, dass tieferliegende Grundwasserleiter der
Elsterkaltzeit und des Pliozän, sofern eine hydraulische Verbindung besteht, auch zum oberflächennahen GWK gehören.

7.2 Grundwasserkörper Este/Seeve Lockergestein (NI11_3) und Braunkohlenlensandste Mittelholstein (N8, tief)

7.2.1 Beschreibung und Bewertung des mengenmäßigen und chemischen Zustands

Mengenmäßiger Zustand

31 Prozess der Verringerung der Durchlässigkeit
Abbildung 7.2-1: Mengenmäßiger Zustand: Bewertungsergebnis Hauptgrundwasserleiter (Oberflächennaher Grundwasserkörper) und tiefe Grundwasserkörper

Quelle: FGG Elbe (2014a, Karte 4.7), dunkelgraue Linie = Stadtgrenze Hamburg

Erläuterung: Der in der Abbildung „rot = schlechter mengenmäßiger Zustand“ dargestellte GWK El12 ist nicht vom Vorhaben betroffen.

In Antragsunterlage B.2.3 wird dementsprechend mitgeteilt, dass von einem guten mengenmäßigen Zustand ausgegangen werden kann und die Lage der Süß-/Salzwassergrenze im Grundwasser im Betrachtungszeitraum stabil war.

Chemischer Zustand

Die gemäß WRRL anzustrebende Zielerreichung ist der „gute chemische Zustand“. Dies beinhaltet die Trendumkehr von Zunahmen bestimmter Schadstoffkonzentrationen (Art. 4 WRRL), sofern diese denn gegeben sind. Das Staufferwasser des Hafengebietes weist Belastungen auf, die auf die im Hafengebiet seit vielen Jahrzehnten intensive gewerbliche und industrielle Nutzung zurückzuführen sind (vgl. Antragsunterlage B.2.3.). Die wenig wasserdurchlässigen Deckschichten sowie das Fließverhalten des Grundwassers schützen den Grundwasserkörper in den Hauptgrundwasserleitern. BSU (2009) bewertet die betreffende Schutzwirkung der Deckschichten im Vorhabensbereich mit „günstig“. In diesen schützenden Weichschichten ist jedoch ein lokal differierendes, teils beachtliches SchadstoffPotenzial vorhanden, aus dem Schadstoffe an das Grundwasser abgeben werden können. Zudem ist die Schutzwirkung nur dann gegeben, wenn die Deckschichten flächig ausgebildet sind und keine Fehlstellen aufweisen (dies im Vorhabensbereich nicht der Fall, s.u.).

Den GWK Este/Seeve NI 11_03 betreffend werden 14 „festgestellte“ und acht „vermutete“ Altlasten genannt. BSU (2005a, Karte 2.1.2.2-1) weist im Vorhabensbereich am Petroleumhafen eine festgestellte, punktuelle Schadstoffbelastung auf. Zu dieser Belastung liegen nähere Informationen vor (Antragsunterlagen B.1.08 und B.2.3):

Abbildung 7.2-2: Chemischer Zustand: Bewertungsergebnis Hauptgrundwasserleiter (Oberflächennaher Grundwasserkörper) und tiefe Grundwasserkörper

Quelle: FGG Elbe (2014a, Karte 4.7), dunkelgraue Linie = Stadtgrenze Hamburg

Nach BSU (2009) erfolgt die „schlechte“ Bewertung des chemischen Zustands im oberflächennahen GWK NI11_3 nicht auf Grund der oben angesprochenen Schadstoffsituation. BSU weist vielmehr da-
rauf hin, dass die Bewertung auf „maßgebenden signifikanten Belastungen“ basiert, die aus dem „Ge-
biet der Nachbarländer“ herrühren. Davon abweichend wird jedoch aus lokaler Sicht aufgrund der
bestehenden Belastungen in dem Stau- und Grundwasser im Vorhabensbereich den Antragsunterla-
gen B.1.0.8 und B.2.3 ein teilweise sehr schlechter chemischer Zustand attestiert.
Erhöhte Chloridgehalte treten durch eine hydraulische Verbindung zwischen oberflächennahen und
tiefen Grundwasserleitern über die Wilhelmsburger Rinne auf, darüber erfolgt ein nicht anthropogen
bedingter Zustrom salzhaltigen Wassers aus dem Salzstock Othmarschen-Langenfelde. Durch geeig-
nete Maßnahmen konnten die Chloridgehalte stabilisiert werden. Ein sachlicher Zusammenhang mit
dem Vorhaben ist nicht gegeben.
Zusammenfassende Bewertung der Grundwasserkörper im Vorhabensbereich
Tabelle 7.2-1 fasst die Bewertung der GWK im Vorhabensbereich zusammen. Der schlechte chemi-
sche Zustand von NI11_3 beruht (s.o.) nicht auf der beschriebenen lokalen Schadstoffsituation (Belas-
tung mit versch. Organochemikalien).

<table>
<thead>
<tr>
<th>Name des Grundwasserkörpers bzw. der -gruppe</th>
<th>Kurzbezeichnung</th>
<th>Flächengröße [km²]</th>
<th>Mengenmäßiger Zustand</th>
<th>Chemischer Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Este/Seeve Lockergestein</td>
<td>NI11_3</td>
<td>1.105</td>
<td>gut</td>
<td>schlecht*</td>
</tr>
<tr>
<td>Braunkohlensandige Mittelholzstein</td>
<td>N 8 (tief)</td>
<td>2.215</td>
<td>gut</td>
<td>gut</td>
</tr>
</tbody>
</table>

Erläuterung: Bewertung gemäß FGG Elbe (2014a, jeweils Karte 4.6, 4.7).
Flächengröße nach BSU (2005b)

7.2.2 Prüfung möglicher vorhabensbedingter Verschlechterungen des men-
genmäßigen und chemischen Zustands

Mengenmäßiger des Grundwassers
Durch die vorhabensbedingt geplante Umgestaltung (u. a. Abtrag von Landflächen, Verfüllung des
Petroleumhafens) und die Flächeninanspruchnahme zur geplanten Folgenutzung ist im Vorhabensbereich (lokal) eine geringfügig veränderte hydraulische Situation zu erwarten. Nach BWS GmbH (2009, Kap. 6.3.1.2, S. 49) sind die Änderungen der Grundwasserstände und Grundwasser-
fließrichtungen jedoch nicht wesentlich. Mess- und beobachtbare Veränderungen des mengenmäßi-
gen Zustands der mit 1.105 und 2.215 km² sehr ausgedehnten GWK, mit denen nur eine sehr einge-
schränkte hydraulische Interaktion besteht, sind vorhabensbedingt nicht zu erwarten. Der gute men-
genmäßige Zustand der WRRL-relevanten GWK ist bereits gegeben. Das hier behandelte Vorhaben
ändert daran nichts.

Chemischer Zustand des Grundwassers
Das Vorhaben ist nicht geeignet den chemischen Zustand der WRRL-relevanten GWK nachteilig zu
verändern. Dies ist v. a. dadurch begründet, dass im Zusammenhang mit der vorhabensbedingten
Umgestaltung (u. a. Abtrag von Landflächen, Verfüllung des Petroleumhafens) die Entfernung von
stark belasteten Böden geplant ist. Wie in den Antragsunterlagen B.1.08 und B.2.3 dargelegt, dass das Vorhaben geeignet ist, die lokale Schadstoffsituation im Boden und im Grundwasser langfristig zu verbessern. Festzuhalten ist, dass vorhabensbedingt nach Abschluss der Bauarbeiten durch

− geeignete Maßnahmen der Wasserbehandlung,
− die externe Verbringung stark belasteter Aushubmassen (Entnahme von Hot Spots der Schadstoffbelastung) sowie
− die großflächige Versiegelung (Verringerung einer über Fehlstellen der Deckschicht möglichen Schadstoffeinsickerung in das Grundwasser)

ein langfristig um 20 bis 60% vermindert (lokaler) Schadstoffeintrag in das Grundwasser zu erwarten ist.

Die Bewertung des chemischen Zustands von GWK NI11-03 mit „schlecht“ beruht nicht auf der gegebenen Schadstoffbelastung (durch Altlasten) im Hafengebiet (s.o.). BSU stellt vielmehr fest, dass im Ist-Zustand gegebene lokale Schadstoffbelastungen ungeeignet sind, die Bewertung der GWK auf Hamburgischem Gebiet zu beeinflussen. Dementsprechend ist auch eine lokale Verminderung der Schadstoffbelastung für die Bewertung der beiden im Vorhabensbereich vorhandenen GWK insgesamt ohne Belang.

Maßgebende Bewirtschaftungsziele zur Erreichung des guten chemischen Zustands des Grundwassers (Einhaltung der UQN für Nitrat und Pestizide sowie Schwellenwerte für Schadstoffe gemäß Grundwasserrichtlinie; Trendumkehr ansteigender Schadstoffkonzentrationen) werden vorhabensbedingt nicht bewertungsrelevant beeinflusst.

7.2.3 Prüfung möglicher vorhabensbedingter Gefährdungen der Zielerreichung des guten mengenmäßigen und chemischen Zustands

Erforderliche Maßnahmen für die Zielerreichung von Grundwasserkörpern im Koordinierungsräum TEL nach FGG Elbe (2014f)

Im aktualisierten Maßnahmenprogramm (FGG Elbe 2014f) werden Maßnahmen nicht Grundwasserkörperspezifisch sondern bezogen auf die einzelnen Koordinierungsräume benannt (FGG Elbe 2014f, Anhang M3). Die Einschätzung möglicher vorhabensbedingter Auswirkungen auf die benannten Maßnahmen sind in der Tabelle 7.2-2 aufgeführt.
Die Tabelle 7.2-2 gibt einen Überblick über die vorhabensbedingten Auswirkungen auf die für die Zielerreichung erforderlichen Maßnahmen für Grundwasserkörper im Koordinierungsraum TEL (FGG Elbe 2014f).

<table>
<thead>
<tr>
<th>Koordinierungsraum</th>
<th>Belastungstyp (FGG Elbe 2014f, Anhang M3)</th>
<th>Nummer und Maßnahmenbezeichnung</th>
<th>Erläuterung / Beschreibung</th>
<th>Einschätzung vorhabensbedingter Auswirkungen auf die Maßnahmen bzw. deren Umsetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>„Diffuse Quellen: Landwirtschaft“</td>
<td>„43 - Maßnahmen zur Reduzierung der Nährstoffeinträge durch besondere Anforderungen in Wasserschutzgebieten.“</td>
<td>„Maßnahmen in Wasser-schutzgebieten mit Acker- oder Grünlandflächen, die über die gute fachliche Praxis hinausgehen und durch Nutzungsbeschrän- kungen oder vertragliche Vereinbarungen zu weitergehenden Maßnahmen verpflichten. Entsprechend der Schutzgebietsskizze wird die Maßnahme nur dem GW zugeordnet.“</td>
<td>Keine vorhabensbedingte Be- oder Verhinderung</td>
</tr>
</tbody>
</table>

Das Vorhaben ist nicht geeignet, die Wirksamkeit der in Tabelle 7.2-2 gelisteten Maßnahmen einzuschränken.

Stand: 17.12.2015
Zielerreichung „guter mengenmäßiger Zustand“
Unter Berücksichtigung der in Kapitel 7.2.2 benannten Aussagen als auch unter Berücksichtigung der Einschätzung vorhabensbedingter Auswirkungen auf die in Tabelle 7.2-2 gelisteten Maßnahmen ist eine Gefährdung der Zielerreichung „guter mengenmäßigen Zustand“ des Grundwassers vorhabensbedingt nicht zu erwarten bzw. ist der bereits erreichte „gute“ Zustand vorhabensbedingt nicht gefährdet.

Zielerreichung „guter chemischer Zustand“
Unter Berücksichtigung der in Kapitel 7.2.2 benannten Aussagen als auch unter Berücksichtigung der Einschätzung vorhabensbedingter Auswirkungen auf die in Tabelle 7.2-2 gelisteten Maßnahmen ist eine Gefährdung der Zielerreichung „guter chemischer Zustand“ des Grundwassers vorhabensbedingt nicht zu erwarten bzw. ist der bereits erreichte „gute“ Zustand vorhabensbedingt nicht gefährdet.

7.2.4 Zusammenfassung und Gesamtbewertung zu den Grundwasserkörpern Este/Seeve Lockergestein (NI11_3) und Braunkohlensande Mittelholstein (N8, tief)
Für den mengenmäßigen und chemischen Zustand der zu untersuchenden Grundwasserkörper wurde dargelegt, dass vorhabensbedingt keine veränderte Zustandsbewertung zu erwarten ist. Auch sind keine weiteren nachteiligen Veränderungen des Status quo den chemischen Zustand zu erwarten. Eine veränderte Gesamtbewertung des mengenmäßigen und chemischen Zustands für die Grundwasserkörper Este/Seeve Lockergestein (NI11_3) und Braunkohlensande Mittelholstein (N8, tief) ergibt sich nicht. Zusammenfassend ist festzuhalten:

- Die vorhabensbedingten Auswirkungen auf das Grundwasser sind nicht signifikant negativ und führen nicht zu einer Überschreitung der Zustandsklasse von „gut“ nach „nicht gut“.
- Die vorhabensbedingten Auswirkungen auf das Grundwasser beziehen sich nicht auf den GWK als räumliche Beurteilungseinheit, sondern sind nur lokal wirksam.
- Die vorhabensbedingten Auswirkungen auf das Grundwasser sind langfristig positiv.
- Eine negative Beeinflussung von grundwasserabhängigen Landökosystemen ist nicht gegeben.
- Das Vorhaben ist mit den Bewirtschaftungszielen für das Grundwasser gemäß § 47 Abs. 3 WHG (Erreichung und Erhaltung eines guten mengenmäßigen und ein guter chemischer Zustands) vereinbar. Die Erreichung des guten mengenmäßigen und chemischen Zustands (soweit nicht bereits gegeben) nach § 47 WHG wird vorhabensbedingt nicht gefährdet sondern tendenziell erleichtert.

Es ist abschließend festzuhalten, dass vorhabensbedingt insbesondere der punktuelle Eintrag von Schadstoffen in das Grundwasser gegenüber dem Ist-Zustand um 20 bis 60% reduziert werden wird. Dies ist, auch im Kontext der WRRL, grundsätzlich und positiv zu bewerten, auch wenn ein derartiger lokaler Effekt ungeeignet ist, die Bewertung der GWK bzw. die Zielerreichung zu beeinflussen.
8 Schadensmindernde Maßnahmen/Vorkehrungen

Verminderung oder Vermeidung nachteiliger Veränderungen des chemischen Zustands und chemischer Qualitätskomponenten (flussgebietsspezifische Schadstoffe)

- Der Abtrag von Landflächen erfolgt unter möglichst geringen Austrägen von Schadstoffen in die Umgebung.
- Die Einlagerung von Aushubmassen erfolgt unter möglichst geringen Austrägen von Schadstoffen in die Umgebung.
- Geeignete Sicherungsmaßnahmen werden in das Baukonzept integriert."

Maßnahmen gegen Verunreinigungen des Oberflächenwassers beim Bodenabtrag

„Eine Verunreinigung des Oberflächenwassers der Elbe wird durch die folgenden Maßnahmen so gering wie möglich gehalten werden (vgl. BWS 2007):

- Detailerkundung der schadstoffbelasteten Böden im Abtragsbereich,
- Möglichst vorlaufende Entnahme und Entsorgung von identifizierten stark belasteten Bodenbereichen,
- Möglichst vorlaufendes Einbringen der Spundwandschürze zur Unterbindung/Minimierung von Stau- und Grundwasserzuströmungen in den Abtragsbereich,
- Abtrag der teilweise belasteten Auffüllungshorizonte im Bereich der Landspitze am Parkhafen weitgehend im Schutz des Restdammes, der den Aushubbereich von der Elbe trennt, dabei anfallendes Sickerwasser (Baugrubenwasser) wird gefasst und bei Erfordernis vor der Ableitung in die Elbe behandelt,
- Fassung von Spülwasser, das ggf. bei der Ankerherstellung für die Rückverankerung der Spundwände anfällt und Ableitung zur Wasserbehandlungsanlage,
- Möglichst weitgehender und tief reichender Abtrag mit Erdbaugeräten von Land aus,
- Schnelle Entnahme und Fortschrittsgeschwindigkeit beim Bodenaushub am Bubendey-Ufer; Begrenzung des jeweils aktiven Aushubbereiches auf möglichst kleine Flächen, um damit unerwartete Schadstoffaustritte zu begrenzen,
- Für stark belastete Böden, die für eine externe Verbringung vorgesehen sind, ist eine gesonderte, gedichtete Fläche als Bereitstellungsoberfläche auf möglichst kleine Flächen, um damit unerwartete Schadstoffaustritte zu begrenzen,
- Bodenaustausch der belasteten Böden zwischen Spundwandschürze und Kaispundwand in dem später tideoffenen Zwickel unter der Kaimauer,
- Einrichtung einer Trennzone mit Installation von Reifenwaschanlagen zur Vermeidung von Bodenaustausch aus der Baustelle.
Darüber hinaus sind im Bereich des Bubendey-Ufers und für den Abtrag des Restdammes im Bereich der Landspitze am Parkhafen zusätzliche Maßnahmen vorgesehen, die das Risiko des Verdriftens von Schadstoffen auf der Elbe weiter vermindern."

Maßnahmen zum Gewässerschutz bei der Einlagerung im Petroleumhafen

„Im Petroleumhafen sollen alle belasteten Böden eingelagert werden, soweit sie nicht extern entsorgt werden müssen. Zum Schutz gegen einen Eintrag von Schadstoffen in Grund- und Oberflächenwasser sind die folgenden Maßnahmen vorgesehen:

- Die an der Basis des Petroleumhafens vorhandene ca. 1 bis 2 m dicke Schlickschicht verbleibt an Ort und Stelle und wird schonend mit einer verrieselten Sandschicht überdeckt, so dass ihre dichtende Wirkung gegenüber dem Grundwasser erhalten bleibt.
- Die seitliche Einfassung des Petroleumhafens besteht aus Spundwänden, die eine horizontale Abströmung behindern.
- Nach Osten wird der Mischbereich mit einem Fangedamm gegenüber einem Wasseraustausch abgedämmt. Die Schlickschicht, die in dem Bodenaustausch – Bereich unterhalb des Fangedammes entnommen wird, wird durch eine Abdichtung auf der westlichen Berme am Fangedamm ersetzt.
- Die Einlagerung der belasteten Böden erfolgt im weiter von der Elbe entfernten Mischbereich.
- Sobald eine ausreichende Überdeckung der Schlickschicht gegen hydraulischen Grundbruch vorhanden ist, wird der Wasserspiegel im Mischbereich auf ca. \(\text{NN} -0,5 \text{ m} \) abgesenkt und damit ein hydraulisches Gefälle bzw. ein Strömungsgefälle vom Grund- bzw. Oberflächenwasser hin zur Einlagerung erzeugt, das nach Möglichkeit einen Austrag von Schadstoffen verhindert.
- Im Zuge der weiteren Einlagerung wird der Wasserspiegel nachfolgend sukzessive wieder ansteigen. Der Anstieg wird auf ein maximales Maß von ca. \(\text{NN} +3,0 \text{ m} \) begrenzt, überschüssiges Wasser wird zur Wasserbehandlung abgeleitet.
- Sobald kein freier Wasserspiegel mehr vorhanden ist, wird eine Dränage (UK: \(\text{NN} + 4,0 \text{ m} \)) in der Sanddeckschicht zur Ableitung des Porenwassers aus den Vertikaldränagen eingebaut.
- Nach Erfordernis werden alle Wasser, die nach Beginn des Einbaus schadstoffbelasteter Böden abgeleitet werden müssen einer Abwasserbehandlungsanlage zugeführt und nachfolgend in die Elbe oder das HSE-Siel eingeleitet.
- Östlich des Fangedammes werden ausschließlich unbelastete Sande eingespült. Durch eine entsprechende Gestaltung der Einspülung und der Entwässerungsgräben sowie durch geeignete Abauflaubauwerke wird gewährleistet, dass sich Trübstoffe vor der Ableitung in die Elbe absetzen und nur weitgehend unbelastetes Wasser mit einem geringen CSB-Wert in die Elbe abfließt.
- Die Oberfläche der Einlagerungsfläche wird im Zuge der Flächenherstellung durch den Nutzer versiegelt."
9 Literatur

Gesetze, Verordnungen, Richtlinien

Sonstige Quellen

BLABAK 2001. Konzept zur Handhabung von Tributylzinn(TBT)-belastetem Baggergut im Küstenbereich. 6 S.

FGG Elbe 2013. Sedimentmanagementkonzept der FGG Elbe. Vorschläge für eine gute Sedimentmanagementpraxis im Elbegebiet zur Erreichung überregionaler Handlungsziele. 383 S.

HGT 2006. Abbau von Tributylzinn/TBT in Sedimenten und Baggergut. Literaturübersicht, Versuche, praktische Erfahrungen. 30 S.

IFB 2006. Temperatur- und Sauerstoff-Toleranz ausgewählter Wanderfischarten der Elbe. Institut für Binnenfischerei, Potsdam, 33 S.

UBA (Umweltbundesamt) 2002. Schwermetalleinträge in die Oberflächengewässer Deutschlands. Texte 54/02. 180 S.